
ADC1X26G Test Report
Rick Raffanti
Techne Instruments, Inc
rikraf@techneinstruments.com

October 30, 2014

This report summarizes the performance of the first assembled unit of the
ADC1X26G ADC board interfaced to the VC709 Virtex7 development board.

System Overview

The ADC1X26G system consists of a Hittite HMC5913 26GSPS, 3.5 bit ADC and
support circuitry interfaced to a VC709 FPGA development board from Xilinx. The
VC709 board carries a XC7VX690T FPGA which contains 80 GTH Multi-Gigibit Serial
Transceivers. The GTH Transceiver is a sophisticated subsystem capable of transmitting
and receiving serial data at rates up to 13.1 Gb/s per channel (though the -2 speed FPGA
on the VC709 is limited to 11Gb/s operation). The transmitter and receiver each have
several functional blocks that are critical for reliable reception of data from the Hittite
ADC.

The Hittite ADC is a "3 plus" bit resolution part, outputting 3 bits plus an overrange

bit, so encoding a total of 10 analog levels. The digital output is demultiplexed into two
4-bit paths, with each path transmitting data at half the sample rate, or 10Gb/s for a
20GSPS conversion rate. Eight GTH Receiver channels are required to receive the data.

The ADC has an XOR input, which allows the user to multiply the digital data out of

the chip by a modulating signal, to ensure there are enough data transitions for successful
clock recovery. An INHIBIT input to the ADC forces the ADC data to zero, causing the
modulation sequence to appear at all ADC output pairs.

ADC Board Overview

A block diagram of the ADC board design is shown here:

A critical requirement for achieving error-free data transmission from the ADC to the

FPGA is the use of a modulation sequence with which the eight serial data streams are

XOR-ed internal to the ADC chip. The GTH receivers detect the clock embedded in the
data stream by sensing the data edges; for this clock detection system to achieve and
retain lock, the data edges must occur sufficiently often. One GTH transmitter is used to
provide this modulation sequence in a very flexible manner.

The HMC723 D flipflop is provided to synchronize the incoming modulation stream
to the Fsample/2 clock provided by the ADC. This relaxes the timing requirement of the
modulation stream from the 20GHz clock domain of the ADC to the 10GHz Fsample/2
domain. A variable delay chip, HMC856, is provided between the DFF and the ADC
chip to adjust the timing of the synchronized sequence to meet the setup and hold
requirements of the ADC's internal registers.

A pair of HMC859 divide-by-eight chips create the 156.25 MHz reference clock
necessary for data reception in the GTH Rxs from the 10GHz clock output from the ADC
(in all of this discussion and all of the testing I used a 20 GHz sample clock generated by
the Hittite HMC T2100 generator seen in the photo).

DC power is supplied from the +12v available on the FMC connector. Two DC/DC
switching converters convert +12 to the -5.0 and -3.3v supply rails required by the ADC
and other parts.

D/A converters are provided to set the ADC's REFT and REFB levels, and thus the
conversion range. The signal input of the ADC is single-ended, dc-coupled, and is
buffered internally by an emitter-follower stage, so the signal applied to the ADC core is
offset by the Vbe of this stage. The DACs set the top and bottom of the reference ladder
to the desired input range offset by this value. The nominal settings are REFT = -900mv,
REFB = -(900 + 256) mv, and thus the nominal input span is 256mv, or 1mv per LSB.

The board sits piggyback on the VC709 and connects via a Samtec SAMTEC ASP-
134488-01 FMC-HPC (FPGA Mezzanine Connector- High Pin Count) connector.

Serial data output to or input from the FPGA are at “Current Mode Logic” (CML)
levels below ground and must therefore be AC-coupled to the FPGA. A long time
constant is desirable here to provide a long averaging time for low dc disparity. 100nF
“ultra-wideband” capacitors fro American Technical Ceramics are used to provide a 5us
(100nf * 50 ohm half-circuit termination resistance) time constant with low losses at RF
frequencies:

All critical signal pairs are run on the top layer of the PCB, whose dielectric is Rogers

4003 RF material. Multiple 2 oz ground planes are employed to conduct heat away from
the high-power parts (primarily the ADC chip). Filled thermal vias under the ADC chip
conduct heat to a bottom-surface copper fill.

Data Alignment

Successful data reception by the GTH Receivers requires several of the GTH
subsystems. The alignment sequence is as follows:

• Assert INHIBIT to force ADC data to 0

• Send pseudo-random bit sequence (PRBS) to modulation port. Enable
PRBS pattern detection in all receivers. This sequence is generated in the GTH
transmitter; dedicated logic in the GTH receiver detects errors in the received
sequence without regard to word- or channel-alignment. This pattern is only used
to set the two delays.

• Perform a 2D scan of delays. The delay through the GTH transmitter is
varied using the PPM Controller of the Tx Phase Interpolator, to find a zone
where the data input to the synchronizing flipflop meets setup and hold
requirements. The delay of the HMC856LC5 variable delay chip is also varied to
find a zone where the data output by the flipflop meets the setup requirements of
the ADC input register. Find a zone in that 2D space where no PRBS7 errors.
Set delays in the middle of this zone.

• Send modulating sequence to modulation port. The modulating sequence
contains both the “commas” necessary for symbol alignment (alignment of the
parallel data on word, in this case 40-bit, boundaries) and the “channel bondng
sequence” necessary to align all of the lanes to each other

• Turn on 8B/10B encoders and decoders. These are necessary to do the
comma detection and channel bonding.

• Enable comma alignment and to align parallel output of receivers to word
boundary; freeze alignment.

• Initiate channel bonding algorithm (aligning the 8 lanes to each other);
freeze channel bond alignment.

• Turn off 8B/10B encoders and decoders.
At this point the data are phase-adjusted and word-aligned, and the modulating

sequence will be seen identically at the eight receiver outputs. The received sequences
are XORed by the demodulation sequence and the result is all zeroes in all channels. The
ADC inhibit is now de-asserted and the ADC data is accurately received.

Block diagrams of a GTH receiver and transmitter channel are shown here with the

functions that are important for the application highlighted.

Firmware Design

The firmware was developed in Xilinx's Vivado design environment (v2014.2) and
comprises a MicroBlaze soft processor, many standard MicroBlaze peripherals, and a
custom peripheral which includes the six GTH receivers, one GTH transmitter,
modulation and demodulation sources, and the 10Gb/s Ethernet components necessary
for high-speed data output.

MicroBlaze system diagram

Standard peripherals employed in the design include:

• DRAM controller

• Interrupt controller

• UART

• IIC interface

• General Purpose IO module

The custom peripheral contains the GTH transmitter and receivers used to modulate

and acquire ADC data, the GTH transmitter for 10Gb/s Ethernet output, and all support
logic.

the custom core containing GTH Rxs and Txs

inside the custom core

The six GTH receivers used to receive the ADC data have several controls accessible
by the MicroBlaze processor:

• 8B/10B decoder enable

• Comma detect enable

• Channel bond enable

• PRBS sequence

• PRBS error counter

The GTH transmitter used to produce the modulating sequence also has several

processor-accessible controls:

• 8B/10B encoder enable

• PRBS generator enable

• PPM controller controls
The GTH channels operate at a parallel data width of 40 bits; for a 20GSPS sample

rate and 10Gb/s per-channel bit rate the parallel input/output data rate is 250MHz (the
design is compiled for a specific sample rate). The modulating sequence is stored in a
40-by-16 ROM and is thus 640bits long. One of four such modulating sequences
(generated at compile time) is selected under processor control.

Data from the eight Rx channels are buffered in a FIFO. An interval counter whose
terminal count is settable under processor control initiates the writing of a series of
samples into the FIFO. The FIFO data is read out under the control of a state machine
which loads data into the 10Gb/s Ethernet MAC (Media Access Controller), which drives

the Ethernet PCS/PMA layers. Appropriate headers are added to the data for Ethernet,
Internet Protocol, and UDP protocol (packets are written to hard-coded MAC and IP
address and UDP port). Clock for the 10Gb/s Ethernet infrastructure is provided by the
VC709’s dedicated clock generation hardware (156.25MHz, independent of the ADC
clock structure).

A demodulation ROM, identical to the modulation ROM, is synchronized to the
received data stream (with ADC inhibited). The ROM’s output is XORed with all
received data streams to recover the unmodulated ADC data.

Integrated Logic Analyzer (formerly known as ChipScope) cores are included to
display the six 40-bit data paths at the parallel outputs of the six GTH Rx channels.
These are very useful for system debug.

Choice of Modulating Sequence

 The modulating sequence with which the ADC data is XORed must meet two
criteria:

• The sequence must have low dc disparity (must have approximately the
same number of 1s and 0s) so that, when the ADC output is inhibited, the ac-
coupled sequence will not contain an appreciable DC component that would
degrade the data eye.

• The sequence must result in a sufficient frequency of data transitions in
the modulated data streams such that the GTH receiver clock recovery system can
function properly.

Additionally, the modulation sequence may have the word- and channel-alignment
codes built-in to permit the Rx logic to do word- and channel-alignment. Note that the
PRBS sequence is only used for adjustment of the phase of the modulation data and is not
used as the modulation sequence itself.

The second requirement demands that the chosen modulation sequence have an
extremely low probability of aligning with the ADC output data; if the two sequences
were to align for a sufficiently long period, the receivers would see no clock transitions
and would fall out of lock. This could cause one or more lanes to lose alignment with
others. The maximum transition-free interval over which the receiver clock recovery
system will stay in lock is not specified in the Xilinx documentation.

I experimented with several sequences and chose a slightly modified 250MHz square
wave as my sequence. The 640-bit sequence contains eight cycles of this waveform, plus
one instance of the comma (for word alignment) and one instance of the channel-bond
sequence (for lane-to-lane alignment). A few cycles of the modulating sequence can be
seen below. The single spike positive is one bit of the comma; the extended chattering
area is the channel-bond sequence. I believe that an RF input high-passed at say 500MHz
would have virtually zero probability of ever aligning with this sequence.

MicroBlaze Software

 The MicroBlaze soft processor receives control commands from a host via a serial
link. The processor interacts with the hardware, setting registers as needed. Additionally,
the processor can do the entire data alignment process when issued the appropriate
command by the host.

Host Interface

A host computer can interact with the system using a simple serial port interface. A
sequence of 10 ASCII characters, terminated by the character “X” allows writing to one
of 10 registers:

“ddddddddaX” writes the hex value 0xdddddddd to register a, 0<=a<=9.
(the hex value uses the characters 0-9 and A-F only, no lower-case)
The registers are as follows

reg 0 to 2: adc1x20g core control
reg 3: unused
reg 4: unused
reg 5: LEDs (six bits- two have been used as clock liveness indicators in this
 version)
reg 6 ADC board low-speed controls:
 bits 4:0 HMC856 delay control, 0-31, approx 3ps/step
 bit 5: ADC_inhibit = 1 to force ADC output to 0
reg 7 DAC REFT 0 to 1023
reg 8 DAC REFB 0 to 1023
reg 9 Command register:
 data=1: Sweep PPM Delay
 data=2: Sweep HMC856 Delay
 data=3: Adjust PPM delay
 data=4: Do complete data alignment
 data=5: Read die temperature

Control and display GUIs

I wrote a Visual C++ GUI to facilitate control of the system.

The various controls to the custom GTH peripheral can be adjusted by hand using this

control GUI.
I also wrote a piece of VC++ code to display the data and store files.

Data output display. Signal is a 100MHz sine wave phase-locked to the generator,

with about 1 LSB rms of added wideband noise.

Design Problems

I made two mistakes in this board design:

• First, I made a pinout error on the FMC connector: the two Overrange
pairs were connected to non-GTH FPGA pairs, so the overrange bit is unavailable,
changing the converter from a 3.5-bit to a 3-bit one.

• Second, the switching converters that I selected to produce -5.0v and -3.3v
from the +12v available on the FMC connector were much too noisy without
additional linear post-regulators. I bypassed these and brought -5.0, -3.3 in from a
pair of lab supplies.

These problems will be addressed in a board revision.

The ADC1X26G Board. Power enters on the right, differential clock and single-

ended data at the bottom. SMAs at the left are unused.

Test Results
For all tests I drove the clock input with the Hittite HMC-T2100 generator, via a

Marki BAL0026 balun. Generator amplitude was set to +12 dBm. The balun has an
insertion loss of 6dB, and the RG316 cables used to connect generator to balun and balun
to board probably contribute a few dB at 20GHz (I have no way to measure this signal
level, but RG316 is not very good above a few GHz). I drove the RF input with a
combination of noise from the NoiseWave NW18G-MI generator (which specifies a +-
0.5dB response from 2 to 10 GHz, and +-2dB from 2 to 18 GHz) and a PTS3200 RF
generator to provide lower frequency sine waves. The two signal sources were combined
by a power combiner internal to the noise generator. For some tests I used a VLF-7200
low-pass filter from Minicircuits (-2dB at 8 GHz) on the input. I used some better
RG142 for the connection from generator to board.

Marki wideband balun for the clock input

Manual Data Alignment

It's instructive to step the system through the various phases of the data alignment
process by hand, observing the system response in the Integrated Logic Analyzer display,
in order to more clearly understand the process.

Step 1: Adjust clock phases with PRBS code stream

Inhibit ADC and turn on PRBS generation/detection in order to adjust the two delay
parameters to center bit sampling in the data eye.

The screenshot above shows a 1k-sample (4us) time slice. The top six waveforms are

the six 40-bit data streams; the next six are the PRBS error flags (one per channel) and
the last is the modulation sequence which will be XORed with the data when it is aligned.
Only the six LSBs of the modulation sequence are shown. The PRBS error flags are not
being asserted, meaning for this initial power-on state the data streams are all being
sampled without errors.

Zooming in on a smaller window of data we can see that the PRBS sequences are all
different, meaning that the data streams are neither word-aligned nor channel-aligned.

Now we can step the PPM controller through a series of steps in the positive direction

until the PRBS error flags become active, to find the edge of the data eye. After 24 steps
(actually 48 steps of the native step size of the PPM controller, as I have the PPM step
size set to 2), all PRBS error flags become active:

We can now step the PPM controller negative until we pass through the error-free

zone of phase settings to another error-full zone, and we find that the width of the error-
free zone is about 28 steps; we then step positive half this amount to center the phase in
the error-free zone. I have found this behavior to completely stable and repeatable: after

a reset, the PPM controller must be stepped positive 24 +- 1 steps to get to the first error
zone.

We can repeat this process with the setting of the HMC856 delay chip. This chip has
a 0 to 31 range with a nominal step size of 3ps. Remarkably, the only settings which
produce any errors are 0, 16 and 17; for all other settings the PRBS codes are received
error-free. I have left this control set at 8 for all tests.

Step 2: word-align all channels

Now, we turn off the PRBS generation/detection and turn on the 8B/10B encoders
and decoders. Now the modulation sequence is flowing through the ADC chip and is
replicated on all channels.

The data streams are still un-aligned. We now turn on comma alignment. The

commas are special characters inserted in the data stream to indicate the word boundaries
of the data. There is both a positive and a negative comma because the 8B/10B encoding
scheme allows two possible codes for each encoded symbol:

Now all six channels are outputting the same sequence of 40-bit words, but the

channels are not aligned to each other.
Step 3: Channel-bond the six channels

Now we turn channel-bonding on, which causes the receiver logic to look for a
unique channel-bond sequence in the data streams and to adjust pointers in the receive
FIFOs to line up all channels.

We see now that all channels are producing identical aligned data streams.
Step 4: Turn off channel-bonding, comma-detection, and encoders/decoders.

Now that the channels are aligned, we can freeze the alignment by turning off all the
alignment functions, so that random patterns in the ADC data do not cause the data to
become mis-aligned.

Now we see the full 40-bit aligned data, and we can see that the sequences match

those in the modulation source file for the selected modulation ROM:

The ROM entries have an extra 4 bits (the leftmost character) which indicate to the

logic which words contain the special control character used as a comma.
Step 5: Align the demodulation generator to the received data streams.

The "Demod Align" checkbox is checked and unchecked. This causes the address
counter for the demodulation ROM to sync up with the data received:

The six LSBs at the bottom match those of all data channels; in fact the demodulation

stream is a full 40-bits in width, but only six LSBs are displayed.

If at this point we capture data, we will see just the modulation sequence (though we

have sync'ed the demodulation source, we have not yet enabled the demodulation XOR
function:

The data capture GUI displays three rows of 512 samples each. The modulation

sequence of 640 bits is repeated over and over. This sequence is a 250MHz squarewave
with one comma and one channel-bond sequence added. The displayed data alternates
between 000 and 111 since all channels are identical.

Now we can turn on the demodulation function (checkbox at the bottom), and we see
that the ADC output is all zeroes, as it should be (the demodulation cancels the
modulation)

The output display has "infinite persistence" (it adds up all the signals displayed) and

is updated once per second. A single bit error is plainly evident during this test, and I
never saw one.

Now we can uninhibit the ADC, and see data

The data being converted here is a 100MHz sinewave adjusted to full-scale amplitude.
The signal generator is phase-locked to the same source as the 20GHz clock generator.

Automated Alignment

The MicroBlaze can do the phase alignment automatically, scanning the phase setting
through a range of delays, finding the edges of the error-free zones, and centering the
phase. We can also use the processor to scan through an arbitrary range of delay settings,
reporting the results via the serial link. Here is a typical output from a scan through
100*2 steps of the PPM controller after a system reset:

800000000X //Assert RESET
000000000X /De-assert RESET
000000019X //Sweep the PPM controller
//MicroBlaze response follows
Stepping PPM through 100 steps of 2 each
Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 0 0 0
Step 17 0 0 0 0 0 0
Step 18 0 0 0 0 0 0
Step 19 0 0 0 0 0 0
Step 20 0 0 0 0 0 0
Step 21 0 0 0 0 0 0
Step 22 0 0 0 0 0 0
Step 23 730 1255 1992 2102 2542 3016
Step 24 58683 65535 65535 65535 65535 65535
Step 25 65535 65535 65535 65535 65535 65535
Step 26 65535 65535 65535 65535 65535 65535
Step 27 65535 65535 65535 65535 65535 65535
Step 28 65535 65535 65535 65535 65535 65535
Step 29 65535 65535 65535 65535 65535 65535
Step 30 21641 31656 48217 61009 65535 65535
Step 31 482 1059 1200 1125 1242 1521
Step 32 15 13 15 15 12 13
Step 33 0 0 0 0 0 0
Step 34 0 0 0 0 0 0
Step 35 0 0 0 0 0 0
Step 36 0 0 0 0 0 0
Step 37 0 0 0 0 0 0
Step 38 0 0 0 0 0 0
Step 39 0 0 0 0 0 0
Step 40 0 0 0 0 0 0
Step 41 0 0 0 0 0 0
Step 42 0 0 0 0 0 0
Step 43 0 0 0 0 0 0
Step 44 0 0 0 0 0 0
Step 45 0 0 0 0 0 0
Step 46 0 0 0 0 0 0
Step 47 0 0 0 0 0 0
Step 48 0 0 0 0 0 0
Step 49 0 0 0 0 0 0
Step 50 0 0 0 0 0 0

Step 51 0 0 0 0 0 0
Step 52 0 0 0 0 0 0
Step 53 0 0 0 0 0 0
Step 54 1 2 30 19 43 41
Step 55 11613 17089 21831 23425 28773 34745
Step 56 65535 65535 65535 65535 65535 65535
Step 57 65535 65535 65535 65535 65535 65535
Step 58 65535 65535 65535 65535 65535 65535
Step 59 65535 65535 65535 65535 65535 65535
Step 60 65535 65535 65535 65535 65535 65535
Step 61 65535 65535 65535 65535 65535 65535
Step 62 10960 19796 33150 36818 41810 52888
Step 63 27 95 149 142 151 221
Step 64 0 0 0 0 0 0
Step 65 0 0 0 0 0 0
Step 66 0 0 0 0 0 0
Step 67 0 0 0 0 0 0
Step 68 0 0 0 0 0 0
Step 69 0 0 0 0 0 0
Step 70 0 0 0 0 0 0
Step 71 0 0 0 0 0 0
Step 72 0 0 0 0 0 0
Step 73 0 0 0 0 0 0
Step 74 0 0 0 0 0 0
Step 75 0 0 0 0 0 0
Step 76 0 0 0 0 0 0
Step 77 0 0 0 0 0 0
Step 78 0 0 0 0 0 0
Step 79 0 0 0 0 0 0
Step 80 0 0 0 0 0 0
Step 81 0 0 0 0 0 0
Step 82 0 0 0 0 0 0
Step 83 0 0 0 0 0 0
Step 84 0 0 0 0 0 0
Step 85 0 0 0 0 0 0
Step 86 0 2 2 1 2 1
Step 87 531 900 1095 1359 1819 1877
Step 88 53667 65535 65535 65535 65535 65535
Step 89 65535 65535 65535 65535 65535 65535
Step 90 65535 65535 65535 65535 65535 65535
Step 91 65535 65535 65535 65535 65535 65535
Step 92 65535 65535 65535 65535 65535 65535
Step 93 65535 65535 65535 65535 65535 65535
Step 94 20475 37708 61380 65535 65535 65535
Step 95 220 593 960 874 1096 1380
Step 96 0 0 0 0 0 0
Step 97 0 0 0 0 0 0
Step 98 0 0 0 0 0 0
Step 99 0 0 0 0 0 0

The output above reports the number of PRBS errors counted over a short time
interval for each of the 6 channels, for each step of the PPM controller. From this output
we see that the period of the noisy zones is about 32 steps, each of which is two native
PPM controller steps. The transmitter output is being applied to the D flipflop, which is
being clocked at 10GHz; thus we see that the native step size of the PPM controller is
about 100ps/64 = 1.56ps/step. We can also see that the quiet zones are 21/32 = 65% of a
bit time.

We can repeat this with the HMC856 delay setting (which adjusts the phase between
the DFF output and the ADC clock)

000000029X //The command to sweep the 856 delay
//The MicroBlaze response
Stepping HMC856 through 32 steps
Step 0 6884 14570 23436 34943 48536 59851
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0

Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 65535 65535 65535
Step 17 0 0 0 52634 65535 65535
Step 18 0 0 0 0 0 0
Step 19 0 0 0 0 0 0
Step 20 0 0 0 0 0 0
Step 21 0 0 0 0 0 0
Step 22 0 0 0 0 0 0
Step 23 0 0 0 0 0 0
Step 24 0 0 0 0 0 0
Step 25 0 0 0 0 0 0
Step 26 0 0 0 0 0 0
Step 27 0 0 0 0 0 0
Step 28 0 0 0 0 0 0
Step 29 0 0 0 0 0 0
Step 30 0 0 0 0 0 0
Step 31 0 0 0 0 0 0

This sweep through all 32 settings shows that there are only 3 codes which produce
errors: 0, 16, and 17. The nominal step size is 3 ps, so the 16 steps between the noisy
zones are in agreement with the 20GHz clock frequency of the ADC's internal registers.
I found that this behavior was extremely stable, and left the delay setting at 8 for all tests.

The processor can also be commanded to sweep the PPM delay through the error-free
zone, find the edge, reverse direction to find the other edge, then back up to the middle of
the error-free zone. A typical response is seen here:

000000039X //The command to adjust PPM delay
//The MicroBlaze response
Adjusting PPM delay
Sweeping positive
Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 3 3 7 6
state = 1
Sweeping negative
Step 0 159 1170 2554 3242 4302 5830
Step 1 6606 19445 35937 49476 62294 65535
Step 2 574 715 2410 4742 6968 8433
Step 3 0 0 7 36 42 37
Step 4 0 0 0 0 0 0
state = 2
Sweeping negative

Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 0 0 0
Step 17 0 0 0 0 0 0
Step 18 0 0 0 0 0 0
Step 19 0 0 0 0 0 0
Step 20 0 0 0 0 0 0
Step 21 72 66 74 105 111 243
state = 3

This process is found to be completely stable and repeatable. Note that this command
can be invoked during data acquisition without any expectation that the data alignment
will be lost. We are just varying the modulation phase until a few errors are detected,
then reversing. There is no reason to fear that any receiver will lose lock. No data will
be acquired during this process (which takes on the order of 100us if the serial output is
suppressed) but the data will still be aligned when the process is complete.

The processor can do the rest of the data alignment in response to a single command,
stepping through the process in about 100us. After power on, the entire process of data
alignment consists of sending the command to "Adjust PPM Controller" and then the
command to "Align Data". After this, the "Adjust PPM Controller" command can be sent
to measure and adjust for any shift in clock phase, perhaps due to system warmup or
other factors.

To test the long-term stability of the data alignment I aligned the data, applied a

100MHz, full-scale, sinewave plus 0.8LSB rms of wideband noise and allowed the
system to run for 6 hours (I found that my run time was limited by the fact that the design
was compiled under the "hardware evaluation" license for the 10Gb/s Ethernet MAC
core; this license causes the core to stop functioning after 8 or so hours. I'll recompile
with a full license when I have access to it). The 100MHz signal was phase-locked to the
20GHz clock source, and the FPGA sample interval (the time between time records being
grabbed by the FPGA) was set to 320us (any multiple of the 10ns signal period would do;
this causes the signal to stay stationary with respect to the sample interval) . I allowed
the two generators to come to thermal equilibrium for several hours before starting the
test. I took data sets at the beginning and end of the test, taking 50 waveforms and
averaging them at each test point. I then plotted the two waveforms to see any data shift.

0

1

2

3

4

5

6

7

8

1 178 355 532 709 886 1063 1240 1417 1594 1771 1948 2125 2302 2479 2656 2833 3010 3187 3364

0

1

2

3

4

5

6

7

8

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193

Six-hour interface test, waveforms averaged at beginning and end

The waveform appears to have shifted about 200ps over the period of the test, which
is likely an analog drift somewhere in the system. The data samples are assembled in sets
of 80 samples internal to the FPGA, so it's unlikely to find a shift of a few samples
resulting from any sort of interface glitch.

Data ordering

The data come out of the ADC demultiplexed into two 4-bit busses designated X and
Y. From the datasheet I believed that the ordering of these two sets of samples (whether
X[n] comes before or after Y[n]) was indeterminate and would need to be determined
from examining the sampled data, either by applying a periodic signal, or by analyzing
wide-band, but low-pass filtered, noise. But in fact, in all tests the X data is found to
precede the Y data. This may possibly not be the case with other HMC5913 chips.

ADC dynamic tests

Noise tests

I connected the noise generator to the ADC board via the VLF-7200 LPF and
adjusted the noise level to about 1.6 LSBs rms, as determined by capturing and analyzing
a few waveforms. I acquired data, computed a 2048-point power spectrum, and averaged
the results for 1000 such records.

Noise Response

50

55

60

65

70

75

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

Bin #, *9.76MHz

d
B

,
A

rb
 r

e
fe

e
re

n
c
e

 The general shape of the response (the 1.3 to 8GHz passband) is that of the noise

source and the LPF, with the noise in the stopband determined by the quantization noise
of a 3-bit ADC. I don't know the source of the dip around 7.5GHz, though I note that the
Hittite datasheet response for shows a similar dip (which they attribute to the PCB):

Here is the same test, with the LPF removed (again having adjusted the noise level to

about 1.6 LSBs rms)

Noise response, no LPF

50

52

54

56

58

60

62

64

66

68

70

1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953 1009

Bin #, * 9.76MHz

d
B

,
a
rb

 r
e
fe

re
n

c
e

We can expect that the excess noise above Fsample/2 (the generator has a bandwidth

to 18GHz) has aliased into the low frequency bins.

Sine wave tests

With the noise source attenuator set to a high value and a full-scale sinewave applied
via the LPF, we can see the time waveforms displayed in the GUI. Since the 100MHz
source is phase-locked to the generator, and the sample interval set to a multiple of 10ns,
the waveforms stack up, and individual errors can be seen in the converted data. Here is
an accumulation of about 50 waveforms (thus 150,000 samples):

0

1

2

3

4

5

6

7

8

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Series1

sparkle code

I believe the glitches are "sparkle codes" often seen in flash converters; Hittite reports
that others have seen these. The frequency of occurrence is exaggerated in the above
display due to the infinite persistence; inspection of the waveforms indicate that they
occur about once in 3000 points for this waveform, typically at the 011 to 100 or 100 to

011 code transition (but not always). I haven't found any way to change the prevalence
of these codes, but am still trying.

A power spectrum (2048 point) of the above waveform looks like this. Largest spur
in this test is at 2.01GHz and is about 29dB down from the fundamental, consistent with
HMC5913 datasheet expectations.

100MHz sine response, no noise

40

50

60

70

80

90

100

1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953 1009

bin #, *9.76MHz

d
B

,
a
rb

 r
e
fe

re
n

c
e

When we add 0.5LSB of noise (again with the 7.2GHz LPF in place) the spurs are

suppressed:

100MHz sinewave, 0.5LSB noise

40

50

60

70

80

90

100

1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953 1009

bin #, *9.76MHz

d
B

,
a
rb

 r
e
fe

re
n

c
e

With the LPF, and the 100MHz buried in noise (switched in a 40dB attenuator in the

100MHz path):

100MHz 40dB belowFS, 1LSB noise

50

52

54

56

58

60

62

64

66

68

70

1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953 1009

bin#, * 9.76MHz

d
B

,
a
rb

 r
e
fe

re
n

c
e

Thermal test

To demonstrate stability of the interface in the case of widely varying FPGA power
dissipation (which could occur in response to changes in applied data, and which could
cause the phase of the modulating signal to shift for thermal reasons, and so degrade data
reception), I allowed the system to come to equilibrium, aligned data using the automated
process, and then blocked the FPGA fan. I read FPGA temperature via the MicroBlaze
and monitored the signal reception (of a noiseless 100MHz sinewave) as the FPGA
heated up. I swept the PPM controller to find the edges of the error-free zones before and
after warmup to see how much phase shift occurs.

Over the course of this test (about 10 minutes) the die temperature rose from 43C to
66C. The data reception continued unchanged:

The logfile below shows the results of the PPM sweeps. The initial PPM scan shows

that the phase setting is 17 steps away from the noisy edge. After the temperature had
risen to 66C, a repeat scan shows that the phase setting is now 19 steps away from the
noisy edge, indicating a shift of just a few steps, still a robust setting for the phase
controller. The automatic adjustment routine could also be invoked at any time, with just
the loss of about 100us of data, to re-center the phase setting.

Temperature 43
000000039X //The "Sweep PPM Phase" command

Adjusting PPM delay
Sweeping positive
Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 0 0 0
Step 17 10 36 47 95 132 237
state = 1
Sweeping negative
Step 0 229 496 927 1354 1686 2145
Step 1 302 686 1279 1912 2501 3211
Step 2 200 443 865 1168 1433 1838
Step 3 59 142 247 341 447 482
Step 4 0 0 0 0 3 4
Step 5 0 0 0 0 0 0
state = 2
Sweeping negative
Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 0 0 0
Step 17 0 0 0 0 0 0
Step 18 0 0 0 0 0 0
Step 19 0 0 0 0 0 0
Step 20 0 0 0 0 0 0
Step 21 0 0 0 0 0 0
Step 22 0 0 0 0 0 0
Step 23 8 54 112 126 161 199
state = 3
000000059X //The "Report Temperature" command
Temperature 44
000000059X
Temperature 47
000000059X
Temperature 50
000000059X
Temperature 56
000000059X
Temperature 59
00000059X
000000059X
Temperature 62
000000059X
Temperature 63

000000059X
Temperature 64
000000059X
Temperature 65
000000059X
Temperature 66
000000039X
Adjusting PPM delay
Sweeping positive
Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 0 0 0
Step 17 0 0 0 0 0 0
Step 18 0 0 0 0 0 0
Step 19 0 7 15 22 28 28
state = 1
Sweeping negative
Step 0 80 322 455 533 591 703
Step 1 323 848 1158 1558 1992 2279
Step 2 86 197 402 621 718 964
Step 3 2 4 14 10 13 15
Step 4 0 0 0 0 0 0
state = 2
Sweeping negative
Step 0 0 0 0 0 0 0
Step 1 0 0 0 0 0 0
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0
Step 4 0 0 0 0 0 0
Step 5 0 0 0 0 0 0
Step 6 0 0 0 0 0 0
Step 7 0 0 0 0 0 0
Step 8 0 0 0 0 0 0
Step 9 0 0 0 0 0 0
Step 10 0 0 0 0 0 0
Step 11 0 0 0 0 0 0
Step 12 0 0 0 0 0 0
Step 13 0 0 0 0 0 0
Step 14 0 0 0 0 0 0
Step 15 0 0 0 0 0 0
Step 16 0 0 0 0 0 0
Step 17 0 0 0 0 0 0
Step 18 0 0 0 0 0 0
Step 19 0 0 0 0 0 0
Step 20 0 0 0 0 0 0
Step 21 0 0 0 0 0 0
Step 22 0 0 0 0 0 0
Step 23 1 1 1 0 0 4
state = 3

Conclusions

The interface via the FMC connector and GTH receivers using the GTH transmitter
as a modulation source is extremely robust, and the ADC performs in accordance with
datasheet expectations. Sparkle codes occur with a surprising frequency, but don't seem
to degrade dynamic performance appreciably

Next steps

The PCB needs to be revised to fix the two problems referred to above. In compiling
the custom GTH core I kept all ten of the available GTH receiver cores, to insure that
whatever pairs are chosen for the OVERRANGE bits would be workable. I will
incorporate linear regulators to provide -5 and -3.3 (post-regulators to the switchers).

The robustness of this interface makes me wonder if the D flipflop, delay chip, and

crosspoint switch are even necessary. Parts cost for these totals about $400, which may
be immaterial, but the power dissipation totals 1.3W.

I'd like to test the system at higher clock rates- the ADC is specified at 26GSPS. The

FPGA on the VC709 is a -2 device, whose GTH transceivers are rated at 11.3 Gb/s,
rather than the maximum 13.1Gb/s of the -3 device. So it would be interesting to test at
22GHz. And it may well work at higher rates, since the transceivers are expecting to
operate over lossy channels, and our signals are very high quality. The HMC-T2100
generator which I used in these tests stops at 20GHz.

The ADC chip dissipates greater than 4W and gets very hot. In all my testing I saw

no problems thermally, but device life would likely be enhanced if the chip were kept
cooler. The ADC chip has a bottom-surface power pad which is soldered to the PCB and
connected with thermal vias to a bottom-surface copper pour. This surface is at -5v, but
could be electrically insulated but thermally coupled to a machined heatsink (which
might be incorporated into an overall chassis for the two-board combination).

The balun is expensive ($1600) and unnecessarily wideband; I was told that Marki

would be making a cheaper board-mount unit that we could put on the board.

