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This report summarizes the performance of the first assembled unit of the 
ADC1X26G ADC board interfaced to the VC709 Virtex7 development board. 

 



System Overview 

The ADC1X26G system consists of a Hittite HMC5913 26GSPS, 3.5 bit ADC and 
support circuitry interfaced to a VC709 FPGA development board from Xilinx.  The 
VC709 board carries a XC7VX690T FPGA which contains 80 GTH Multi-Gigibit Serial 
Transceivers.  The GTH Transceiver is a sophisticated subsystem capable of transmitting 
and receiving serial data at rates up to 13.1 Gb/s per channel (though the -2 speed FPGA 
on the VC709 is limited to 11Gb/s operation).  The transmitter and receiver each have 
several functional blocks that are critical for reliable reception of data from the Hittite 
ADC. 

 
The Hittite ADC is a "3 plus" bit resolution part, outputting 3 bits plus an overrange 

bit, so encoding a total of 10 analog levels.  The digital output is demultiplexed into two 
4-bit paths, with each path transmitting data at half the sample rate, or 10Gb/s for a 
20GSPS conversion rate.  Eight GTH Receiver channels are required to receive the data. 

 
The ADC has an XOR input, which allows the user to multiply the digital data out of 

the chip by a modulating signal, to ensure there are enough data transitions for successful 
clock recovery.  An INHIBIT input to the ADC forces the ADC data to zero, causing the 
modulation sequence to appear at all ADC output pairs. 

 

ADC Board Overview 

A block diagram of the ADC board design is shown here: 
 
 
 

 
 
A critical requirement for achieving error-free data transmission from the ADC to the 

FPGA is the use of a modulation sequence with which the eight serial data streams are 



XOR-ed internal to the ADC chip.  The GTH receivers detect the clock embedded in the 
data stream by sensing the data edges; for this clock detection system to achieve and 
retain lock, the data edges must occur sufficiently often.  One GTH transmitter is used to 
provide this modulation sequence in a very flexible manner. 

The HMC723 D flipflop is provided to synchronize the incoming modulation stream 
to the Fsample/2 clock provided by the ADC.  This relaxes the timing requirement of the 
modulation stream from the 20GHz clock domain of the ADC  to the 10GHz Fsample/2 
domain.  A variable delay chip, HMC856, is provided between the DFF and the ADC 
chip to adjust the timing of the synchronized sequence to meet the setup and hold 
requirements of the ADC's internal registers. 

A pair of HMC859 divide-by-eight chips create the 156.25 MHz reference clock 
necessary for data reception in the GTH Rxs from the 10GHz clock output from the ADC 
(in all of this discussion and all of the testing I used a 20 GHz sample clock generated by 
the Hittite HMC T2100 generator seen in the photo). 

DC power is supplied from the +12v available on the FMC connector.  Two DC/DC 
switching converters convert +12 to the -5.0 and -3.3v supply rails required by the ADC 
and other parts. 

D/A converters are provided to set the ADC's REFT and REFB levels, and thus the 
conversion range.  The signal input of the ADC is single-ended, dc-coupled, and is 
buffered internally by an emitter-follower stage, so the signal applied to the ADC core is 
offset by the Vbe of this stage.  The DACs set the top and bottom of the reference ladder 
to the desired input range offset by this value.  The nominal settings are REFT = -900mv, 
REFB = -(900 + 256) mv, and thus the nominal input span is 256mv, or 1mv per LSB.  

The board sits piggyback on the VC709 and connects via a Samtec SAMTEC ASP-
134488-01 FMC-HPC (FPGA Mezzanine Connector- High Pin Count) connector. 

Serial data output to or input from the FPGA are at “Current Mode Logic” (CML) 
levels below ground and must therefore be AC-coupled to the FPGA.  A long time 
constant is desirable here to provide a long averaging time for low dc disparity.  100nF 
“ultra-wideband” capacitors fro American Technical Ceramics are used to provide a 5us 
(100nf * 50 ohm half-circuit termination resistance) time constant with low losses at RF 
frequencies: 

 
All critical signal pairs are run on the top layer of the PCB, whose dielectric is Rogers 

4003 RF material.  Multiple 2 oz ground planes are employed to conduct heat away from 
the high-power parts (primarily the ADC chip).  Filled thermal vias under the ADC chip 
conduct heat to a bottom-surface copper fill. 



 
 
 
Data Alignment 

Successful data reception by the GTH Receivers requires several of the GTH 
subsystems.  The alignment sequence is as follows: 

• Assert INHIBIT to force ADC data to 0 

• Send pseudo-random bit sequence (PRBS) to modulation port.  Enable 
PRBS pattern detection in all receivers.  This sequence is generated in the GTH 
transmitter; dedicated logic in the GTH receiver detects errors in the received 
sequence without regard to word- or channel-alignment.  This pattern is only used 
to set the two delays. 

• Perform a 2D scan of delays.  The delay through the GTH transmitter is 
varied using the PPM Controller of the Tx Phase Interpolator, to find a zone 
where the data input to the synchronizing flipflop meets setup and hold 
requirements.  The delay of the HMC856LC5 variable delay chip is also varied to 
find a zone where the data output by the flipflop meets the setup requirements of 
the ADC input register.  Find a zone in that 2D space where no PRBS7 errors.  
Set delays in the middle of this zone. 

• Send modulating sequence to modulation port.  The modulating sequence 
contains both the “commas” necessary for symbol alignment (alignment of the 
parallel data on word, in this case 40-bit, boundaries) and the “channel bondng 
sequence” necessary to align all of the lanes to each other 

• Turn on 8B/10B encoders and decoders.  These are necessary to do the 
comma detection and channel bonding. 

• Enable comma alignment and to align parallel output of receivers to word 
boundary; freeze alignment. 

• Initiate channel bonding algorithm (aligning the 8 lanes to each other); 
freeze channel bond alignment. 

• Turn off 8B/10B encoders and decoders. 
At this point the data are phase-adjusted and word-aligned, and the modulating 

sequence will be seen identically at the eight receiver outputs.  The received sequences 
are XORed by the demodulation sequence and the result is all zeroes in all channels.  The 
ADC inhibit is now de-asserted and the ADC data is accurately received. 



 
Block diagrams of a GTH receiver and transmitter channel are shown here with the 

functions that are important for the application highlighted. 

 
 

 
 
 
Firmware Design 

The firmware was developed in Xilinx's Vivado design environment (v2014.2) and 
comprises a MicroBlaze soft processor, many standard MicroBlaze peripherals, and a 
custom peripheral which includes the six GTH receivers, one GTH transmitter, 
modulation and demodulation sources, and the 10Gb/s Ethernet components necessary 
for high-speed data output. 

 



 
MicroBlaze system diagram 

Standard peripherals employed in the design include: 

• DRAM controller 

• Interrupt controller 

• UART 

• IIC interface 

• General Purpose IO module 
 
The custom peripheral contains the GTH transmitter and receivers used to modulate 

and acquire ADC data, the GTH transmitter for 10Gb/s Ethernet output, and all support 
logic. 

 
the custom core containing GTH Rxs and Txs 

 
 
 



inside the custom core 

 

The six GTH receivers used to receive the ADC data have several controls accessible 
by the MicroBlaze processor: 

• 8B/10B decoder enable 

• Comma detect enable 

• Channel bond enable 

• PRBS sequence  

• PRBS error counter 
 
The GTH transmitter used to produce the modulating sequence also has several 

processor-accessible controls: 

• 8B/10B encoder enable 

• PRBS generator enable 

• PPM controller controls 
The GTH channels operate at a parallel data width of 40 bits; for a 20GSPS sample 

rate and 10Gb/s per-channel bit rate the parallel input/output data rate is 250MHz (the 
design is compiled for a specific sample rate).  The modulating sequence is stored in a 
40-by-16 ROM and is thus 640bits long.  One of four such modulating sequences 
(generated at compile time) is selected under processor control. 

Data from the eight Rx channels are buffered in a FIFO.  An interval counter whose 
terminal count is settable under processor control initiates the writing of a series of 
samples into the FIFO.  The FIFO data is read out under the control of a state machine 
which loads data into the 10Gb/s Ethernet MAC (Media Access Controller), which drives 



the Ethernet PCS/PMA layers.  Appropriate headers are added to the data for Ethernet, 
Internet Protocol, and UDP protocol (packets are written to hard-coded MAC and IP 
address and UDP port).  Clock for the 10Gb/s Ethernet infrastructure is provided by the 
VC709’s dedicated clock generation hardware (156.25MHz, independent of the ADC 
clock structure). 

A demodulation ROM, identical to the modulation ROM, is synchronized to the 
received data stream (with ADC inhibited).  The ROM’s output is XORed with all 
received data streams to recover the unmodulated ADC data. 

Integrated Logic Analyzer (formerly known as ChipScope) cores are included to 
display the six 40-bit data paths at the parallel outputs of the six GTH Rx channels.  
These are very useful for system debug. 

 
Choice of Modulating Sequence 

 The modulating sequence with which the ADC data is XORed must meet two 
criteria: 

• The sequence must have low dc disparity (must have approximately the 
same number of 1s and 0s) so that, when the ADC output is inhibited, the ac-
coupled sequence will not contain an appreciable DC component that would 
degrade the data eye. 

• The sequence must result in a sufficient frequency of data transitions in 
the modulated data streams such that the GTH receiver clock recovery system can 
function properly. 

Additionally, the modulation sequence may have the word- and channel-alignment 
codes built-in to permit the Rx logic to do word- and channel-alignment.  Note that the 
PRBS sequence is only used for adjustment of the phase of the modulation data and is not 
used as the modulation sequence itself. 

The second requirement demands that the chosen modulation sequence have an 
extremely low probability of aligning with the ADC output data; if the two sequences 
were to align for a sufficiently long period, the receivers would see no clock transitions 
and would fall out of lock.  This could cause one or more lanes to lose alignment with 
others.  The maximum transition-free interval over which the receiver clock recovery 
system will stay in lock is not specified in the Xilinx documentation.  

I experimented with several sequences and chose a slightly modified 250MHz square 
wave as my sequence.  The 640-bit sequence contains eight cycles of this waveform, plus 
one instance of the comma (for word alignment) and one instance of the channel-bond 
sequence (for lane-to-lane alignment).  A few cycles of the modulating sequence can be 
seen below.  The single spike positive is one bit of the comma; the extended chattering 
area is the channel-bond sequence.  I believe that an RF input high-passed at say 500MHz 
would have virtually zero probability of ever aligning with this sequence. 

 



MicroBlaze Software 

 The MicroBlaze soft processor receives control commands from a host via a serial 
link.  The processor interacts with the hardware, setting registers as needed.  Additionally, 
the processor can do the entire data alignment process when issued the appropriate 
command by the host. 

Host Interface 

A host computer can interact with the system using a simple serial port interface.  A 
sequence of 10 ASCII characters, terminated by the character “X” allows writing to one 
of 10 registers: 

“ddddddddaX” writes the hex value 0xdddddddd to register a, 0<=a<=9. 
(the hex value uses the characters 0-9 and A-F only, no lower-case) 
The registers are as follows 

reg 0 to 2:  adc1x20g core control  
reg 3:  unused 
reg 4:  unused 
reg 5:  LEDs (six bits- two have been used as clock liveness indicators in this  
  version) 
reg 6  ADC board low-speed controls: 
   bits 4:0  HMC856 delay control, 0-31, approx 3ps/step 
   bit 5:  ADC_inhibit = 1 to force ADC output to 0 
reg 7  DAC REFT  0 to 1023 
reg 8  DAC REFB  0 to 1023 
reg 9   Command register: 
  data=1: Sweep PPM Delay 
  data=2: Sweep HMC856 Delay 
  data=3: Adjust PPM delay 
  data=4: Do complete data alignment 
  data=5: Read die temperature 

 
Control and display GUIs 

I wrote a Visual C++ GUI to facilitate control of the system. 



 
The various controls to the custom GTH peripheral can be adjusted by hand using this 

control GUI. 
I also wrote a piece of VC++ code to display the data and store files. 

 
Data output display.  Signal is a 100MHz sine wave phase-locked to the generator, 

with about 1 LSB rms of added wideband noise. 

 
 



Design Problems 

I made two mistakes in this board design: 

• First, I made a pinout error on the FMC connector: the two Overrange 
pairs were connected to non-GTH FPGA pairs, so the overrange bit is unavailable, 
changing the converter from a 3.5-bit to a 3-bit one. 

• Second, the switching converters that I selected to produce -5.0v and -3.3v 
from the +12v available on the FMC connector were much too noisy without 
additional linear post-regulators.  I bypassed these and brought -5.0, -3.3 in from a 
pair of lab supplies. 

These problems will be addressed in a board revision. 

 
The ADC1X26G Board.  Power enters on the right, differential clock and single-

ended data at the bottom.  SMAs at the left are unused. 

 



Test Results 
For all tests I drove the clock input with the Hittite HMC-T2100 generator, via a 

Marki BAL0026 balun.  Generator amplitude was set to +12 dBm.  The balun has an 
insertion loss of 6dB, and the RG316 cables used to connect generator to balun and balun 
to board probably contribute a few dB at 20GHz (I have no way to measure this signal 
level, but RG316 is not very good above a few GHz).  I drove the RF input with a 
combination of noise from the NoiseWave NW18G-MI generator (which specifies a +- 
0.5dB response from 2 to 10 GHz, and +-2dB from 2 to 18 GHz) and a PTS3200 RF 
generator to provide lower frequency sine waves.  The two signal sources were combined 
by a power combiner internal to the noise generator.  For some tests I used a VLF-7200 
low-pass filter from Minicircuits (-2dB at 8 GHz) on the input.  I used some better 
RG142 for the connection from generator to board. 

 
Marki wideband balun for the clock input 

 

Manual Data Alignment 

It's instructive to step the system through the various phases of the data alignment 
process by hand, observing the system response in the Integrated Logic Analyzer display, 
in order to more clearly understand the process. 

Step 1: Adjust clock phases with PRBS code stream 

Inhibit ADC and turn on PRBS generation/detection in order to adjust the two delay 
parameters to center bit sampling in the data eye. 

  



 
The screenshot above shows a 1k-sample (4us) time slice.  The top six waveforms are 

the six 40-bit data streams; the next six are the PRBS error flags (one per channel) and 
the last is the modulation sequence which will be XORed with the data when it is aligned.  
Only the six LSBs of the modulation sequence are shown.  The PRBS error flags are not 
being asserted, meaning for  this initial power-on state the data streams are all being 
sampled without errors.   

Zooming in on a smaller window of data we can see that the PRBS sequences are all 
different, meaning that the data streams are neither word-aligned nor channel-aligned. 

 
Now we can step the PPM controller through a series of steps in the positive direction 

until the PRBS error flags become active, to find the edge of the data eye.  After 24 steps 
(actually 48 steps of the native step size of the PPM controller, as I have the PPM step 
size set to 2), all PRBS error flags become active: 

 
We can now step the PPM controller negative until we pass through the error-free 

zone of phase settings to another error-full zone, and we find that the width of the error-
free zone is about 28 steps; we then step positive half this amount to center the phase in 
the error-free zone.  I have found this behavior to completely stable and repeatable: after 



a reset, the PPM controller must be stepped positive 24 +- 1 steps to get to the first error 
zone. 

We can repeat this process with the setting of the HMC856 delay chip.  This chip has 
a 0 to 31 range with a nominal step size of 3ps.  Remarkably, the only settings which 
produce any errors are 0, 16 and 17; for all other settings the PRBS codes are received 
error-free.  I have left this control set at 8 for all tests. 

 
Step 2: word-align all channels 

Now, we turn off the PRBS generation/detection and turn on the 8B/10B encoders 
and decoders.  Now the modulation sequence is flowing through the ADC chip and is 
replicated on all channels. 

   
The data streams are still un-aligned.  We now turn on comma alignment.  The 

commas are special characters inserted in the data stream to indicate the word boundaries 
of the data.  There is both a positive and a negative comma because the 8B/10B encoding 
scheme allows two possible codes for each encoded symbol: 

  
Now all six channels are outputting the same sequence of 40-bit words, but the 

channels are not aligned to each other. 
Step 3: Channel-bond the six channels 

Now we turn channel-bonding on, which causes the receiver logic to look for a 
unique channel-bond sequence in the data streams and to adjust pointers in the receive 
FIFOs to line up all channels. 



 
We see now that all channels are producing identical aligned data streams. 
Step 4: Turn off channel-bonding, comma-detection, and encoders/decoders. 

Now that the channels are aligned, we can freeze the alignment by turning off all the 
alignment functions, so that random patterns in the ADC data do not cause the data to 
become mis-aligned.   

 
Now we see the full 40-bit aligned data, and we can see that the sequences match 

those in the modulation source file for the selected modulation ROM: 

 
The ROM entries have an extra 4 bits (the leftmost character) which indicate to the 

logic which words contain the special control character used as a comma. 
Step 5: Align the demodulation generator to the received data streams. 

The "Demod Align" checkbox is checked and unchecked.  This causes the address 
counter for the demodulation ROM to sync up with the data received: 



 
The six LSBs at the bottom match those of all data channels; in fact the demodulation 

stream is a full 40-bits in width, but only six LSBs are displayed. 
 
If at this point we capture data, we will see just the modulation sequence (though we 

have sync'ed the demodulation source, we have not yet enabled the demodulation XOR 
function: 

 
The data capture GUI displays three rows of 512 samples each.  The modulation 

sequence of 640 bits is repeated over and over.  This sequence is a 250MHz squarewave 
with one comma and one channel-bond sequence added.  The displayed data alternates 
between 000 and 111 since all channels are identical. 

Now we can turn on the demodulation function (checkbox at the bottom), and we see 
that the ADC output is all zeroes, as it should be (the demodulation cancels the 
modulation) 

 
The output display has "infinite persistence" (it adds up all the signals displayed) and 

is updated once per second.  A single bit error is plainly evident during this test, and I 
never saw one. 

Now we can uninhibit the ADC, and see data 

 



The data being converted here is a 100MHz sinewave adjusted to full-scale amplitude.  
The signal generator is phase-locked to the same source as the 20GHz clock generator. 

 
Automated Alignment 

The MicroBlaze can do the phase alignment automatically, scanning the phase setting 
through a range of delays, finding the edges of the error-free zones, and centering the 
phase.  We can also use the processor to scan through an arbitrary range of delay settings, 
reporting the results via the serial link.  Here is a typical output from a scan through 
100*2 steps of the PPM controller after a system reset: 

800000000X   //Assert RESET 
000000000X   /De-assert RESET 
000000019X   //Sweep the PPM controller 
//MicroBlaze response follows 
Stepping PPM through 100 steps of 2 each 
Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   0   0   0  
Step 17   0   0   0   0   0   0  
Step 18   0   0   0   0   0   0  
Step 19   0   0   0   0   0   0  
Step 20   0   0   0   0   0   0  
Step 21   0   0   0   0   0   0  
Step 22   0   0   0   0   0   0  
Step 23   730   1255   1992   2102   2542   3016  
Step 24   58683   65535   65535   65535   65535   65535  
Step 25   65535   65535   65535   65535   65535   65535  
Step 26   65535   65535   65535   65535   65535   65535  
Step 27   65535   65535   65535   65535   65535   65535  
Step 28   65535   65535   65535   65535   65535   65535  
Step 29   65535   65535   65535   65535   65535   65535  
Step 30   21641   31656   48217   61009   65535   65535  
Step 31   482   1059   1200   1125   1242   1521  
Step 32   15   13   15   15   12   13  
Step 33   0   0   0   0   0   0  
Step 34   0   0   0   0   0   0  
Step 35   0   0   0   0   0   0  
Step 36   0   0   0   0   0   0  
Step 37   0   0   0   0   0   0  
Step 38   0   0   0   0   0   0  
Step 39   0   0   0   0   0   0  
Step 40   0   0   0   0   0   0  
Step 41   0   0   0   0   0   0  
Step 42   0   0   0   0   0   0  
Step 43   0   0   0   0   0   0  
Step 44   0   0   0   0   0   0  
Step 45   0   0   0   0   0   0  
Step 46   0   0   0   0   0   0  
Step 47   0   0   0   0   0   0  
Step 48   0   0   0   0   0   0  
Step 49   0   0   0   0   0   0  
Step 50   0   0   0   0   0   0  



Step 51   0   0   0   0   0   0  
Step 52   0   0   0   0   0   0  
Step 53   0   0   0   0   0   0  
Step 54   1   2   30   19   43   41  
Step 55   11613   17089   21831   23425   28773   34745  
Step 56   65535   65535   65535   65535   65535   65535  
Step 57   65535   65535   65535   65535   65535   65535  
Step 58   65535   65535   65535   65535   65535   65535  
Step 59   65535   65535   65535   65535   65535   65535  
Step 60   65535   65535   65535   65535   65535   65535  
Step 61   65535   65535   65535   65535   65535   65535  
Step 62   10960   19796   33150   36818   41810   52888  
Step 63   27   95   149   142   151   221  
Step 64   0   0   0   0   0   0  
Step 65   0   0   0   0   0   0  
Step 66   0   0   0   0   0   0  
Step 67   0   0   0   0   0   0  
Step 68   0   0   0   0   0   0  
Step 69   0   0   0   0   0   0  
Step 70   0   0   0   0   0   0  
Step 71   0   0   0   0   0   0  
Step 72   0   0   0   0   0   0  
Step 73   0   0   0   0   0   0  
Step 74   0   0   0   0   0   0  
Step 75   0   0   0   0   0   0  
Step 76   0   0   0   0   0   0  
Step 77   0   0   0   0   0   0  
Step 78   0   0   0   0   0   0  
Step 79   0   0   0   0   0   0  
Step 80   0   0   0   0   0   0  
Step 81   0   0   0   0   0   0  
Step 82   0   0   0   0   0   0  
Step 83   0   0   0   0   0   0  
Step 84   0   0   0   0   0   0  
Step 85   0   0   0   0   0   0  
Step 86   0   2   2   1   2   1  
Step 87   531   900   1095   1359   1819   1877  
Step 88   53667   65535   65535   65535   65535   65535  
Step 89   65535   65535   65535   65535   65535   65535  
Step 90   65535   65535   65535   65535   65535   65535  
Step 91   65535   65535   65535   65535   65535   65535  
Step 92   65535   65535   65535   65535   65535   65535  
Step 93   65535   65535   65535   65535   65535   65535  
Step 94   20475   37708   61380   65535   65535   65535  
Step 95   220   593   960   874   1096   1380  
Step 96   0   0   0   0   0   0  
Step 97   0   0   0   0   0   0  
Step 98   0   0   0   0   0   0  
Step 99   0   0   0   0   0   0 
 

The output above reports the number of PRBS errors counted over a short time 
interval for each of the 6 channels, for each step of the PPM controller.  From this output 
we see that the period of the noisy zones is about 32 steps, each of which is two native 
PPM controller steps.  The transmitter output is being applied to the D flipflop, which is 
being clocked at 10GHz; thus we see that the native step size of the PPM controller is 
about 100ps/64 = 1.56ps/step.  We can also see that the quiet zones are 21/32 = 65% of a 
bit time. 

We can repeat this with the HMC856 delay setting (which adjusts the phase between 
the DFF output and the ADC clock) 

000000029X    //The command to sweep the 856 delay 
//The MicroBlaze response 
Stepping HMC856 through 32 steps 
Step 0   6884   14570   23436   34943   48536   59851  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  



Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   65535   65535   65535  
Step 17   0   0   0   52634   65535   65535  
Step 18   0   0   0   0   0   0  
Step 19   0   0   0   0   0   0  
Step 20   0   0   0   0   0   0  
Step 21   0   0   0   0   0   0  
Step 22   0   0   0   0   0   0  
Step 23   0   0   0   0   0   0  
Step 24   0   0   0   0   0   0  
Step 25   0   0   0   0   0   0  
Step 26   0   0   0   0   0   0  
Step 27   0   0   0   0   0   0  
Step 28   0   0   0   0   0   0  
Step 29   0   0   0   0   0   0  
Step 30   0   0   0   0   0   0  
Step 31   0   0   0   0   0   0 

This sweep through all 32 settings shows that there are only 3 codes which produce 
errors: 0, 16, and 17.  The nominal step size is 3 ps, so the 16 steps between the noisy 
zones are in agreement with the 20GHz clock frequency of the ADC's internal registers.  
I found that this behavior was extremely stable, and left the delay setting at 8 for all tests. 

The processor can also be commanded to sweep the PPM delay through the error-free 
zone, find the edge, reverse direction to find the other edge, then back up to the middle of 
the error-free zone.  A typical response is seen here: 

000000039X    //The command to adjust PPM delay 
//The MicroBlaze response 
Adjusting PPM delay 
Sweeping positive 
Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   3   3   7   6  
state = 1 
Sweeping negative 
Step 0   159   1170   2554   3242   4302   5830  
Step 1   6606   19445   35937   49476   62294   65535  
Step 2   574   715   2410   4742   6968   8433  
Step 3   0   0   7   36   42   37  
Step 4   0   0   0   0   0   0  
state = 2 
Sweeping negative 



Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   0   0   0  
Step 17   0   0   0   0   0   0  
Step 18   0   0   0   0   0   0  
Step 19   0   0   0   0   0   0  
Step 20   0   0   0   0   0   0  
Step 21   72   66   74   105   111   243  
state = 3 

This process is found to be completely stable and repeatable.  Note that this command 
can be invoked during data acquisition without any expectation that the data alignment 
will be lost.  We are just varying the modulation phase until a few errors are detected, 
then reversing.  There is no reason to fear that any receiver will lose lock.  No data will 
be acquired during this process (which takes on the order of 100us if the serial output is 
suppressed) but the data will still be aligned when the process is complete. 
 

The processor can do the rest of the data alignment in response to a single command, 
stepping through the process in about 100us.  After power on, the entire process of data 
alignment consists of sending the command to "Adjust PPM Controller" and then the 
command to "Align Data".  After this, the "Adjust PPM Controller" command can be sent 
to measure and adjust for any shift in clock phase, perhaps due to system warmup or 
other factors. 

 
To test the long-term stability of the data alignment I aligned the data, applied a 

100MHz, full-scale, sinewave plus 0.8LSB rms of wideband noise and allowed the 
system to run for 6 hours (I found that my run time was limited by the fact that the design 
was compiled under the "hardware evaluation" license for the 10Gb/s Ethernet MAC 
core; this license causes the core to stop functioning after 8 or so hours.  I'll recompile 
with a full license when I have access to it).  The 100MHz signal was phase-locked to the 
20GHz clock source, and the FPGA sample interval (the time between time records being 
grabbed by the FPGA) was set to 320us (any multiple of the 10ns signal period would do; 
this causes the signal to stay stationary with respect to the sample interval) .  I allowed 
the two generators to come to thermal equilibrium for several hours before starting the 
test. I took data sets at the beginning and end of the test, taking 50 waveforms and 
averaging them at each test point.  I then plotted the two waveforms to see any data shift. 
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Six-hour interface test, waveforms averaged at beginning and end 

The waveform appears to have shifted about 200ps over the period of the test, which 
is likely an analog drift somewhere in the system.  The data samples are assembled in sets 
of 80 samples internal to the FPGA, so it's unlikely to find a shift of a few samples 
resulting from any sort of interface glitch. 

 
Data ordering 

The data come out of the ADC demultiplexed into two 4-bit busses designated X and 
Y.  From the datasheet I believed that the ordering of these two sets of samples (whether 
X[n] comes before or after Y[n]) was indeterminate and would need to be determined 
from examining the sampled data, either by applying a periodic signal, or by analyzing 
wide-band, but low-pass filtered, noise.  But in fact, in all tests the X data is found to 
precede the Y data.  This may possibly not be the case with other HMC5913 chips. 

 
 
ADC dynamic tests 

Noise tests 

I connected the noise generator to the ADC board via the VLF-7200 LPF and 
adjusted the noise level to about 1.6 LSBs rms, as determined by capturing and analyzing 
a few waveforms.  I acquired data, computed a 2048-point power spectrum, and averaged 
the results for 1000 such records. 



Noise Response
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 The general shape of the response (the 1.3 to 8GHz passband) is that of the noise 

source and the LPF, with the noise in the stopband determined by the quantization noise 
of a 3-bit ADC.  I don't know the source of the dip around 7.5GHz, though I note that the 
Hittite datasheet response for shows a similar dip (which they attribute to the PCB): 

 
 
Here is the same test, with the LPF removed (again having adjusted the noise level to 

about 1.6 LSBs rms) 



Noise response, no LPF
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We can expect that the excess noise above Fsample/2 (the generator has a bandwidth 

to 18GHz) has aliased into the low frequency bins. 
 
Sine wave tests 

With the noise source attenuator set to a high value and a full-scale sinewave applied 
via the LPF, we can see the time waveforms displayed in the GUI.  Since the 100MHz 
source is phase-locked to the generator, and the sample interval set to a multiple of 10ns, 
the waveforms stack up, and individual errors can be seen in the converted data.  Here is 
an accumulation of about 50 waveforms (thus 150,000 samples): 
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sparkle code 

I believe the glitches are "sparkle codes" often seen in flash converters; Hittite reports 
that others have seen these.  The frequency of occurrence is exaggerated in the above 
display due to the infinite persistence; inspection of the waveforms indicate that they 
occur about once in 3000 points for this waveform, typically at the 011 to 100 or 100 to 



011 code transition (but not always).  I haven't found any way to change the prevalence 
of these codes, but am still trying. 

A power spectrum (2048 point) of the above waveform looks like this.  Largest spur 
in this test is at 2.01GHz and is about 29dB down from the fundamental, consistent with 
HMC5913 datasheet expectations. 

100MHz sine response, no noise
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When we add 0.5LSB of noise (again with the 7.2GHz LPF in place) the spurs are 

suppressed: 

100MHz sinewave, 0.5LSB noise
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With the LPF, and the 100MHz buried in noise (switched in a 40dB attenuator in the 

100MHz path): 



100MHz 40dB belowFS, 1LSB noise
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Thermal test 

To demonstrate stability of the interface in the case of widely varying FPGA power 
dissipation (which could occur in response to changes in applied data, and which could 
cause the phase of the modulating signal to shift for thermal reasons, and so degrade data 
reception), I allowed the system to come to equilibrium, aligned data using the automated 
process, and then blocked the FPGA fan.  I read FPGA temperature via the MicroBlaze 
and monitored the signal reception (of a noiseless 100MHz sinewave) as the FPGA 
heated up.  I swept the PPM controller to find the edges of the error-free zones before and 
after warmup to see how much phase shift occurs.   

Over the course of this test (about 10 minutes) the die temperature rose from 43C to 
66C.  The data reception continued unchanged: 

 
The logfile below shows the results of the PPM sweeps.  The initial PPM scan shows 

that the phase setting is 17 steps away from the noisy edge.  After the temperature had 
risen to 66C, a repeat scan shows that the phase setting is now 19 steps away from the 
noisy edge, indicating a shift of just a few steps, still a robust setting for the phase 
controller.  The automatic adjustment routine could also be invoked at any time, with just 
the loss of about 100us of data, to re-center the phase setting. 

 
Temperature 43 
000000039X  //The "Sweep PPM Phase" command 



Adjusting PPM delay 
Sweeping positive 
Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   0   0   0  
Step 17   10   36   47   95   132   237  
state = 1 
Sweeping negative 
Step 0   229   496   927   1354   1686   2145  
Step 1   302   686   1279   1912   2501   3211  
Step 2   200   443   865   1168   1433   1838  
Step 3   59   142   247   341   447   482  
Step 4   0   0   0   0   3   4  
Step 5   0   0   0   0   0   0  
state = 2 
Sweeping negative 
Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   0   0   0  
Step 17   0   0   0   0   0   0  
Step 18   0   0   0   0   0   0  
Step 19   0   0   0   0   0   0  
Step 20   0   0   0   0   0   0  
Step 21   0   0   0   0   0   0  
Step 22   0   0   0   0   0   0  
Step 23   8   54   112   126   161   199  
state = 3 
000000059X  //The "Report Temperature" command 
Temperature 44 
000000059X 
Temperature 47 
000000059X 
Temperature 50 
000000059X 
Temperature 56 
000000059X 
Temperature 59 
00000059X 
000000059X 
Temperature 62 
000000059X 
Temperature 63 



000000059X 
Temperature 64 
000000059X 
Temperature 65 
000000059X 
Temperature 66 
000000039X 
Adjusting PPM delay 
Sweeping positive 
Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   0   0   0  
Step 17   0   0   0   0   0   0  
Step 18   0   0   0   0   0   0  
Step 19   0   7   15   22   28   28  
state = 1 
Sweeping negative 
Step 0   80   322   455   533   591   703  
Step 1   323   848   1158   1558   1992   2279  
Step 2   86   197   402   621   718   964  
Step 3   2   4   14   10   13   15  
Step 4   0   0   0   0   0   0  
state = 2 
Sweeping negative 
Step 0   0   0   0   0   0   0  
Step 1   0   0   0   0   0   0  
Step 2   0   0   0   0   0   0  
Step 3   0   0   0   0   0   0  
Step 4   0   0   0   0   0   0  
Step 5   0   0   0   0   0   0  
Step 6   0   0   0   0   0   0  
Step 7   0   0   0   0   0   0  
Step 8   0   0   0   0   0   0  
Step 9   0   0   0   0   0   0  
Step 10   0   0   0   0   0   0  
Step 11   0   0   0   0   0   0  
Step 12   0   0   0   0   0   0  
Step 13   0   0   0   0   0   0  
Step 14   0   0   0   0   0   0  
Step 15   0   0   0   0   0   0  
Step 16   0   0   0   0   0   0  
Step 17   0   0   0   0   0   0  
Step 18   0   0   0   0   0   0  
Step 19   0   0   0   0   0   0  
Step 20   0   0   0   0   0   0  
Step 21   0   0   0   0   0   0  
Step 22   0   0   0   0   0   0  
Step 23   1   1   1   0   0   4  
state = 3 

 
 



Conclusions 

The interface via the FMC connector and GTH receivers using the GTH transmitter 
as a modulation source is extremely robust, and the ADC performs in accordance with 
datasheet expectations.  Sparkle codes occur with a surprising frequency, but don't seem 
to degrade dynamic performance appreciably 

 

Next steps 

The PCB needs to be revised to fix the two problems referred to above.  In compiling 
the custom GTH core I kept all ten of the available GTH receiver cores, to insure that 
whatever pairs are chosen for the OVERRANGE bits would be workable.  I will 
incorporate linear regulators to provide -5 and -3.3 (post-regulators to the switchers). 

 
The robustness of this interface makes me wonder if the D flipflop, delay chip, and 

crosspoint switch are even necessary.  Parts cost for these totals about $400, which may 
be immaterial, but the power dissipation totals 1.3W. 

 
I'd like to test the system at higher clock rates- the ADC is specified at 26GSPS.  The 

FPGA on the VC709 is a -2 device, whose GTH transceivers are rated at 11.3 Gb/s, 
rather than the maximum 13.1Gb/s of the -3 device.  So it would be interesting to test at 
22GHz.  And it may well work at higher rates, since the transceivers are expecting to 
operate over lossy channels, and our signals are very high quality.  The HMC-T2100 
generator which I used in these tests stops at 20GHz. 

 
The ADC chip dissipates greater than 4W and gets very hot.  In all my testing I saw 

no problems thermally, but device life would likely be enhanced if the chip were kept 
cooler.  The ADC chip has a bottom-surface power pad which is soldered to the PCB and 
connected with thermal vias to a bottom-surface copper pour.  This surface is at -5v, but 
could be electrically insulated but thermally coupled to a machined heatsink (which 
might be incorporated into an overall chassis for the two-board combination). 

 
The balun is expensive ($1600) and unnecessarily wideband; I was told that Marki 

would be making a cheaper board-mount unit that we could put on the board. 


