
 1

TimePix Kintex Platform

System Manual
Rick Raffanti

Table of Contents
System Overview 2

Hardware Design

• ASIC Board 3

• Interface Board 4

• ZDOK Adapter 5

• Voltage Regulator Board 6

• ROACH Board 7

Firmware Design

• Interface Board 8

• ROACH Board 11

Interfaces

• TimePix DashBoard GUI 13

• C Language Library 16

• PC �������� Roach 18

• Roach �������� Interface Board 26

Documents

• Top Assembly BOM and Drawing tree 32

• Schematics 34

• Parts Lists 41

Hardware Fabrication History 44

 2

System Overview

The TimePix Fast Readout system is designed to read out four 256 by 256 pixel TimePix ASICs,

for a total of 256k pixels. The diagram shows the major system components.

 3

Hardware Design
ASIC Board

ASIC Board- top

ASIC Board- bottom

The ASIC Board, shown above without ASICs, carries four TimePix ASICs, butted

together and die-bonded in the central area, top. A 100-pin connector (Samtec LTH-050-01-G-

D-A-TR) at each end connects via a custom flex PCB (one of which is shown at bottom) to an

Interface Board, each of which serves two of the ASICs. Two temperature sensor chips are

located near the ASICs on the other side of the PCB. The ASIC board requires +5 and +2.7v,

 4

and locally regulates to the required supply rails. Power dissipation is about 5W. The board

mounts in a vacuum housing with the flex cables bonded into slots exiting the housing.

Interface Board

The Interface Board, shown above with a flex PCB installed at the right and a data

transmission cable at the left, connects to one end of the ASIC board, servicing two of the

ASICs. A Spartan3AN FPGA interfaces to the ASICs, reading out the data and rearranging the

bits before conditioning the data for DDR (Double Data Rate) transmission to the Roach board.

A four-channel ADC is provided to read out the voltage of the DAC_OUT terminal of

each ASIC; the other two channels are used to monitor the local supply voltages (the 2-by-2

jumper block J7, bottom right, allows access to these two channels for other purposes if desired,

12 bits, 3.3v full scale).

An eight-channel DAC is provided to set the two levels of the TEST signal; a signal

generated by the FPGA produces a transition between these two levels when so commanded.

The other six DAC channels are made available on the 2-by-6 jumper block J5, bottom, second

to right, 2.0v full scale, 10 bits.

The 2-by-8 jumper block J8, second from left, bottom, provides 8 FPGA inputs, and is

unused.

The bottom left 2-by-6 block J4 provides access to 6 FPGA input/output pins. The

jumper block must be configured as shown (one jumper installed) when power is applied for the

FPGA to boot properly (normally we’ll leave the jumper block like this, though the jumper can

be removed to allow a debug signal to be output on this pin).

The three LEDs at top right are, from right, D1, D2, and D3. D1 is the “FPGA OK”

LED: if this LED is not on, nothing will work. The other two are commandable as described

below, under “TimePixDashBoard”.

 5

The Interface Board is mounted in a housing made by Compac-RF, a standard box with

modifications by the manufacturer. It requires +5v, locally regulating to the necessary rails, and

dissipates about 2 watts.

KC705 Adapter Board

 6

Voltage Regulator Board

The Voltage Regulator Board, shown above not fully populated, accepts 12v dc input on the

screw terminal connector at top and employs two dc/dc converters to produce the +5v and +2.7v

required by the ASIC and Interface boards. The voltages supplied are “remotely sensed” (a

separate wire is used to sense the voltage at the end of the connecting cable) to remove the

voltage drop that occurs in the cable and allow the use of smaller conductors (the board will

work without a cable installed, though).

 7

KC705 Development Board

 8

Firmware Design

Interface Board

Timepix IF board firmware overview

The block diagram above shows the overall design of the Spartan 3AN firmware of the

interface board. At the right, 40 pairs from the Roach board (via the ZDOK adapter) enter. At

the left, the flex PCB carries signals to one half of the ASIC board (two ASICs). Two clocks are

supplied: the 100MHz sysclk, and the variable-frequency cnt_clk. A 3-pair serial interface

accepts 16-bit commands and data for the ASIC Fast Shift Register (256 bits) and Pixel Matrix

(917,504 bits). Logic is included for reading out the ADC (for digitizing the DAC_out signals of

the ASICs) and the temperature sensors on the ASIC board, and for setting the DACs (for

controlling the TEST signal levels). The pixel data is read out from the ASICs by the Data

Readout/Reorganize block, and is made available at the output in the form of two 14-bit busses, a

parity bit (as a check of data transmission integrity), a sync bit (to indicate the beginning of a

readout packet) and a clock signal, in a Double Data Rate (DDR) format at 112.5MHz. This data

rate allows the 100 MHz 64 bit data entering the board at 6.4Mbits/sec to be transmitted out at 28

bits * 2 (DDR) * 112.5MHz = 6.3Mbits/sec, with a set of local FIFOs buffering a small amount

of data (1/64 * ~2Mbits = 32kbits) during each transmission.

 9

TimePix IF Board Data Readout/Reorganize Module

The Data Readout/Reorganize module, shown in block diagram above, receives the pixel

data from the ASICs, clocked out at 100MHz. The data is presented in a scrambled form, the

result of the TimePix chip’s serial/parallel readout scheme. Data is shifted in serially eight bits

at a time and buffered in FIFOs. The bytes are sequenced through the Bit Reorganizer blocks, in

which 14 bytes are loaded into a register file, then read out serially to the Output Double Data

Rate transmitters (ODDRs) according to the timing diagram below. As the data from one Bit

Reorganizer are being read out, the next Bit Reorganizer is being filled with bytes from the input

shift registers; when the first has been emptied, the next is ready to be dumped. In this way a

constant stream of data is made available to the ODDR block. In the diagram above, data from

ASIC 0 is processed by the blue blocks and output on the DDR bus rising edges, from ASIC 1 by

the green blocks and the falling edges.

 10

TimePix ASIC parallel output data sequence, data bus bit 0.

TimePix IF Bit Reorganizer Timing

The Parity bit, not shown in the block diagram, is generated in the IF board and is added

to each 28-bit word to guarantee even parity (an even number of 1’s in each 29-bit word). This

can be checked either in Roach firmware or in software to verify the data transmission integrity

from IF board to host (but not including the transmission from ASIC board to IF board).

The Sync bit generation is also not shown. A single pulse is transmitted on this pair to

indicate the first data word sent in a readout packet.

 11

KC705 Firmware

The firmware design is based on a Microblaze processor system and three custom IP cores:

Microblaze system, custom cores indicated

The custom cores: "timepix_input_module", "timepix_shutter", "timepix_serial_io"

 12

10GbE Transmit paths

The timepix_input_module transmits packets directly through the standard Xilinx

IP core "10G Ethernet Subsystem"; this is the red path, above. The Microblaze can

also transmit packets via the blue path, for housekeeping data. A number of

standard IP modules are needed to make this work:

AXI Stream Memory Mapped FIFO, to convert from processor-accessible

memory mapped access to stream access

AXI-4 Stream Datawidth Converter, to go from 32-bit processor domain to 64-

bit width of the 10G subsystem

Clock Crossing FIFO, to go from the 100MHz processor domain to the

156.25MHz 10G domain

AXIS switch, to combine the two streams

Transmit FIFO, to buffer packets prior to transmission

 13

10GbE Receive path

There is a single receive path, allowing the KC705 to receive commands via the

10GbE interface, as indicated in red, requiring:

AXI-4 Stream FIFO, for buffering received packets

AXI-4 Stream Datawidth Converter, to go from 64 to 32 bits

Clock Crossing FIFO, to go from the 156.25MHz domain to the 100MHz one.

The received data packets are made available to the processor via the AXI Stream

Memory Mapped FIFO

 14

Shutter Control module

The shutter control module consists of three 512 deep RAMs whose contents can

be written under program control. When triggered (either from the external

hardware trigger input or from software control) the shutter signal to the ASICs is

stepped through the programmed series of Wait and Open periods, settable in 10ns

steps, and the count_clock pair is sequenced through the programmed series of

frequencies. A Read pulse is emitted at the end of each shutter to tell the IF boards

to send back data.

 15

Serial IO module

The Serial_IO module allows the shifting out of a 16- or 32-bit word to one or the

other IF board (determined by the side signal). Longer sequences can be written

by holding the enable line true while writing successive 32-bit words. Data shifted

out from the IF boards is then available to be read under processor control. The

serial clock is 1/32 of the processor clock, so about 3MHz for a 100MHz processor

clock.

 16

Timepix_input_module

This module receives the pixel data from the IF boards and transmits them to the

10GbE interface.

30 data pairs and a clock pair enter from each IF board. The 30 pairs consist of

two groups of 14 pixel data pairs, a parity pair, and a sync pair.

The timepix_input module incorporates two large (60 by 32k) FIFOs to receive

data from the two IF boards. Data is written at 112.5MHz DDR; a DCM for each

source-sync clock pair is used to center the clock edge in the data eye. Each burst

of data is accompanied by a SYNC pulse, asserted during the first word of the

burst. The SYNC pulse resets a counter which counts for 32768 clock pulses,

filling the FIFO. Both IF boards transmit data simultaneously at the end of the

shutter interval.

The data written to the FIFOs is decoded from the LFSR format to binary, if the

decode_on is asserted, else it's passed through unchanged. The data is transferred

in 64-bit words to the 10GbE Ethernet subsystem under the control of a state

machine. Appropriate header words for Ethernet, IP, and UDP formats are added.

MAC address, IP address, and UDP port are all hard-coded.

Parity-checking logic looks for and counts parity errors in the input data (each pair

of 14-bit parallel words at the input is accompanied by one parity bit).

A pair of counters is used to attach a time-tag to the shutter pulse; the 48-bit

elapsed time counter provides a time-stamp relative to a software-controlled reset,

while the 32-bit shutter_time counter provides a time-stamp relative to the trigger

 17

signal which initiated the shutter sequence. A shutter serial number, incremented

at each shutter and reset at trigger, is also provided.

A fake data generator is available to check data transmission from KC705 to the

host. The generator produces a 32768-word-long pseudo-random sequence. The

repetition rate for the sequence can be varied from about 5Hz to 1.2kHz.

The data format is

fake_data = {1'b1, LFSR15, 1'b0, LFSR15, 1'b0, LFSR15, 1'b1, LFSR15},

where LFSR15 is the 15-bit LFSR sequence starting at 0x0001, with feedback

taken from bits 14 and 13. The LFSR sequence itself is of 32767 values; the last

value is repeated once to form the 32768 value sequence.

 18

KC705 MicroBlaze Software

 19

Interfaces

TimePix_FE to TimePix_IF interconnect

 20

TimePix_IF to KC705 Adapter Interconnect

Adapter board pinout is as follows. All signal pairs are inverted by a pair-swap, except for the

two highlighted.
 January 26, 2015. Rev A. Per PCB layout

 TimePix IF Board KC705 Adapter KC705

Index
TimePix_IF
FPGA pin Signal Name Function

QSH
Pin

Which
QSH Adapter Net

Which
FMC FMC pin FPGA loc

1 W12 LVDS_P[0] PDATA_P[0] 2 J3 L_LA00P J2 g6 AD23

2 Y12 LVDS_N[0] PDATA_N[0] 4 J3 L_LA00N J2 g7 AE24

3 W10 LVDS_P[1] PDATA_P[1] 6 J3 L_LA03P J2 g9 AG20

4 V10 LVDS_N[1] PDATA_N[1] 8 J3 L_LA03N J2 g10 AH20

5 Y9 LVDS_P[2] PDATA_P[2] 10 J3 L_LA05P J2 d11 AG22

6 W9 LVDS_N[2] PDATA_N[2] 12 J3 L_LA05N J2 d12 AH22

7 V9 LVDS_P[3] PDATA_P[3] 14 J3 L_LA08P J2 g12 AJ22

8 V8 LVDS_N[3] PDATA_N[3] 16 J3 L_LA08N J2 g13 AJ23

9 U5 LVDS_P[4] PDATA_P[4] 18 J3 L_LA10P J2 c14 AJ24

10 V5 LVDS_N[4] PDATA_N[4] 20 J3 L_LA10N J2 c15 AK25

11 U6 LVDS_P[5] PDATA_P[5] 22 J3 L_LA12P J2 g15 AA20

12 T7 LVDS_N[5] PDATA_N[5] 24 J3 L_LA12N J2 g16 AB20

13 U9 LVDS_P[6] PDATA_P[6] 26 J3 L_LA13P J2 d17 AB24

14 T9 LVDS_N[6] PDATA_N[6] 28 J3 L_LA13N J2 d18 AC25

15 V12 LVDS_P[7] PDATA_P[7] 30 J3 L_LA16P J2 g18 AC22

16 U11 LVDS_N[7] PDATA_N[7] 32 J3 L_LA16N J2 g19 AD22

17 V13 LVDS_P[8] PDATA_P[8] 34 J3 L_LA17_CCP J2 d20 AB27

18 U13 LVDS_N[8] PDATA_N[8] 36 J3 L_LA17_CCN J2 d21 AC27

19 F9 LVDS_P[9] PDATA_P[9] 38 J3 L_LA19P J2 h22 AJ26

20 E9 LVDS_N[9] PDATA_N[9] 40 J3 L_LA19N J2 h23 AK26

21 F13 LVDS_P[10] PDATA_P[10] 42 J3 L_LA23P J2 d23 AH26

22 E13 LVDS_N[10] PDATA_N[10] 44 J3 L_LA23N J2 d24 AH27

23 F7 LVDS_P[11] PDATA_P[11] 46 J3 L_LA21P J2 h25 AG27

24 E7 LVDS_N[11] PDATA_N[11] 48 J3 L_LA21N J2 h26 AG28

25 D8 LVDS_P[12] PDATA_P[12] 50 J3 L_LA27P J2 c26 AJ28

26 C7 LVDS_N[12] PDATA_N[12] 52 J3 L_LA27N J2 c27 AJ29

27 B3 LVDS_P[13] PDATA_P[13] 54 J3 H_LA26P J1 d26 B18

28 A3 LVDS_N[13] PDATA_N[13] 56 J3 H_LA26N J1 d27 A18

29 B2 LVDS_P[14] PDATA_P[14] 58 J3 L_LA29P J2 g30 AE28

30 A2 LVDS_N[14] PDATA_N[14] 60 J3 L_LA29N J2 g31 AF28

31 B5 LVDS_P[15] PDATA_P[15] 62 J3 H_LA04P J1 h10 G28

32 A5 LVDS_N15] PDATA_N[15] 64 J3 H_LA04N J1 h11 F28

33 A7 LVDS_P[16] PDATA_P[16] 66 J3 H_LA23N J1 d24 A22

34 B7 LVDS_N[16] PDATA_N[16] 68 J3 H_LA23P J1 d23 B22

35 C8 LVDS_P[17] PDATA_P[17] 70 J3 H_HA14P J1 j15 J16

36 B8 LVDS_N[17] PDATA_N[17] 72 J3 H_HA14N J1 j16 H16

37 E10 LVDS_P[18] PDATA_P[18] 74 J3 H_HA22N J1 j22 K11

 21

38 D10 LVDS_N[18] PDATA_N[18] 76 J3 H_HA22P J1 j21 L11

39 C11 LVDS_P[19] PDATA_P[19] 78 J3 H_LA02P J1 h7 H24

40 B11 LVDS_N[19] PDATA_N[19] 80 J3 H_LA02N J1 h8 H25

41 W13 LVDS_P[20] PDATA_P[20] 1 J3 L_LA02P J2 h7 AF20

42 Y13 LVDS_N[20] PDATA_N[20] 3 J3 L_LA02N J2 h8 AF21

43 V11 LVDS_P[21] PDATA_P[21] 5 J3 L_LA01P J2 d8 AE23

44 Y11 LVDS_N[21] PDATA_N[21] 7 J3 L_LA01N J2 d9 AF23

45 Y7 LVDS_P[22] PDATA_P[22] 9 J3 L_LA06P J2 c10 AK20

46 Y6 LVDS_N[22] PDATA_N[22] 11 J3 L_LA06N J2 c11 AK21

47 W8 LVDS_P[23] PDATA_P[23] 13 J3 L_LA04P J2 h10 AH21

48 V7 LVDS_N[23] PDATA_N[23] 15 J3 L_LA04N J2 h11 AJ21

49 Y5 LVDS_P[24] PDATA_P[24] 17 J3 L_LA07P J2 h13 AG25

50 Y4 LVDS_N[24] PDATA_N[24] 19 J3 L_LA07N J2 h14 AH25

51 W4 LVDS_P[25] PDATA_P[25] 21 J3 L_LA09P J2 d14 AK23

52 Y3 LVDS_N[25] PDATA_N[25] 23 J3 L_LA09N J2 d15 AK24

53 R7 LVDS_P[26] PDATA_P[26] 25 J3 L_LA11P J2 h16 AE25

54 T6 LVDS_N[26] PDATA_N[26] 27 J3 L_LA11N J2 h17 AF25

55 T10 LVDS_P[27] PDATA_P[27] 29 J3 L_LA14P J2 c18 AD21

56 U10 LVDS_N[27] PDATA_N[27] 31 J3 L_LA14N J2 c19 AE21

57 R12 LVDS_P[28] Parity_P 33 J3 L_LA15P J2 h19 AC24

58 T12 LVDS_N[28] Parity_N 35 J3 L_LA15N J2 h20 AD24

59 R13 LVDS_P[29] Sync_P 37 J3 L_LA20P J2 g21 AF26

60 T13 LVDS_N[29] Sync_N 39 J3 L_LA20N J2 g22 AF27

61 F12 LVDS_P[30] DataClk_P 41 J3 L_LA18_CCP J2 c22 AD27

62 D12 LVDS_N[30] DataClk_N 43 J3 L_LA18_CCN J2 c23 AD28

63 F8 LVDS_P[31] SysClk_P 45 J3 L_LA22P J2 g24 AJ27

64 E8 LVDS_N[31] SysClk_N 47 J3 L_LA22N J2 g25 AK28

65 F6 LVDS_P[32] Reset_P 49 J3 L_LA26P J2 d26 AK29

66 E6 LVDS_N[32] Reset_N 51 J3 L_LA26N J2 d27 AK30

67 D6 LVDS_P[33] Read_P 53 J3 L_LA25P J2 g27 AC26

68 C5 LVDS_N[33] Read_N 55 J3 L_LA25N J2 g28 AD26

69 C4 LVDS_P[34] Shutter_P 57 J3 L_LA24P J2 h28 AG30

70 A4 LVDS_N[34] Shutter_N 59 J3 L_LA24N J2 h29 AH30

71 C6 LVDS_P[35] CountClk_P 61 J3 L_LA28P J2 h31 AE30

72 A6 LVDS_N[35] CountClk_N 63 J3 L_LA28N J2 h32 AF30

73 A8 LVDS_P[36] SerEn_P 65 J3 L_LA31P J2 g33 AD29

74 A9 LVDS_N[36] SerEn_N 67 J3 L_LA31N J2 g34 AE29

75 C9 LVDS_P[37] SerDat2IF_P 69 J3 L_LA30P J2 h34 AB29

76 B9 LVDS_N[37] SerDat2IF_N 71 J3 L_LA30N J2 h35 AB30

77 E11 LVDS_P[38] SerClk_P 73 J3 L_LA33P J2 g36 AC29

78 D11 LVDS_N[38] SerClk_N 75 J3 L_LA33N J2 g37 AC30

79 C12 LVDS_P[39] SerDatFrIF_P 77 J3 L_LA32P J2 h37 Y30

80 B13 LVDS_N[39] SerDatFrIF_N 79 J3 L_LA32N J2 h38 AA30

81 W12 LVDS_P[0] PDATA_P[0] 2 J4 H_HA01_CCP J1 e2 H14

82 Y12 LVDS_N[0] PDATA_N[0] 4 J4 H_HA01_CCN J1 e3 G14

83 W21 LVDS_P[1] PDATA_P[1] 6 J4 H_HA02P J1 k7 D11

 22

84 V10 LVDS_N[1] PDATA_N[1] 8 J4 H_HA02N J1 k8 C11

85 W9 LVDS_P[2] PDATA_P[2] 10 J4 H_HA04P J1 f7 F11

86 Y9 LVDS_N[2] PDATA_N[2] 12 J4 H_HA04N J1 f8 E11

87 V9 LVDS_P[3] PDATA_P[3] 14 J4 H_LA03P J1 g9 H26

88 V8 LVDS_N[3] PDATA_N[3] 16 J4 H_LA03N J1 g10 H27

89 V5 LVDS_P[4] PDATA_P[4] 18 J4 H_HA06P J1 k10 D14

90 U5 LVDS_N[4] PDATA_N[4] 20 J4 H_HA06N J1 k11 C14

91 U6 LVDS_P[5] PDATA_P[5] 22 J4 H_LA08P J1 g12 E29

92 T7 LVDS_N[5] PDATA_N[5] 24 J4 H_LA08N J1 g13 E30

93 U9 LVDS_P[6] PDATA_P[6] 26 J4 H_LA12P J1 g15 C29

94 T9 LVDS_N[6] PDATA_N[6] 28 J4 H_LA12N J1 g16 B29

95 V12 LVDS_P[7] PDATA_P[7] 30 J4 H_HA10P J1 k13 A11

96 U11 LVDS_N[7] PDATA_N[7] 32 J4 H_HA10N J1 k14 A12

97 V13 LVDS_P[8] PDATA_P[8] 34 J4 H_HA15P J1 f16 H15

98 U13 LVDS_N[8] PDATA_N[8] 36 J4 H_HA15N J1 f17 G15

99 F9 LVDS_P[9] PDATA_P[9] 38 J4 H_LA11P J1 h16 G27

100 E9 LVDS_N[9] PDATA_N[9] 40 J4 H_LA11N J1 h17 F27

101 F13 LVDS_P[10] PDATA_P[10] 42 J4 H_LA13P J1 d17 A25

102 E13 LVDS_N[10] PDATA_N[10] 44 J4 H_LA13N J1 d18 A26

103 F7 LVDS_P[11] PDATA_P[11] 46 J4 H_HA21P J1 k19 J11

104 E7 LVDS_N[11] PDATA_N[11] 48 J4 H_HA21N J1 k20 J12

105 D8 LVDS_P[12] PDATA_P[12] 50 J4 H_HA19P J1 f19 H11

106 C7 LVDS_N[12] PDATA_N[12] 52 J4 H_HA19N J1 f20 H12

107 B3 LVDS_P[13] PDATA_P[13] 54 J4 H_LA20N J1 g21 E19

108 A3 LVDS_N[13] PDATA_N[13] 56 J4 H_LA20P J1 g22 D19

109 B2 LVDS_P[14] PDATA_P[14] 58 J4 H_LA25P J1 g27 G17

110 A2 LVDS_N[14] PDATA_N[14] 60 J4 H_LA25N J1 g28 F17

111 B5 LVDS_P[15] PDATA_P[15] 62 J4 H_LA28P J1 h31 D16

112 A5 LVDS_N15] PDATA_N[15] 64 J4 H_LA28N J1 h32 C16

113 A7 LVDS_P[16] PDATA_P[16] 66 J4 H_LA21P J1 h25 A20

114 B7 LVDS_N[16] PDATA_N[16] 68 J4 H_LA21N J1 h26 A21

115 C8 LVDS_P[17] PDATA_P[17] 70 J4 H_LA30P J1 h34 D22

116 B8 LVDS_N[17] PDATA_N[17] 72 J4 H_LA30N J1 h35 C22

117 E10 LVDS_P[18] PDATA_P[18] 74 J4 H_LA24P J1 h28 A16

118 D10 LVDS_N[18] PDATA_N[18] 76 J4 H_LA24N J1 h29 A17

119 C11 LVDS_P[19] PDATA_P[19] 78 J4 H_LA33P J1 g36 H21

120 B11 LVDS_N[19] PDATA_N[19] 80 J4 H_LA33N J1 g37 H22

121 W13 LVDS_P[20] PDATA_P[20] 1 J4 H_HA03P J1 j6 C12

122 Y13 LVDS_N[20] PDATA_N[20] 3 J4 H_HA03N J1 j7 B12

123 V11 LVDS_P[21] PDATA_P[21] 5 J4 H_LA00_CCP J1 g6 C25

124 Y11 LVDS_N[21] PDATA_N[21] 7 J4 H_LA00_CCN J1 g7 B25

125 Y7 LVDS_P[22] PDATA_P[22] 9 J4 H_HA07P J1 j9 B14

126 Y6 LVDS_N[22] PDATA_N[22] 11 J4 H_HA07N J1 j10 A15

127 W8 LVDS_P[23] PDATA_P[23] 13 J4 H_HA00_CCP J1 f4 D12

 23

128 V7 LVDS_N[23] PDATA_N[23] 15 J4 H_HA00_CCN J1 f5 D13

129 Y5 LVDS_P[24] PDATA_P[24] 17 J4 H_HA08P J1 f10 E14

130 Y4 LVDS_N[24] PDATA_N[24] 19 J4 H_HA08N J1 f11 E15

131 W4 LVDS_P[25] PDATA_P[25] 21 J4 H_HA11P J1 j12 B13

132 Y3 LVDS_N[25] PDATA_N[25] 23 J4 H_HA11N J1 j13 A13

133 R7 LVDS_P[26] PDATA_P[26] 25 J4 H_LA07P J1 h13 E28

134 T6 LVDS_N[26] PDATA_N[26] 27 J4 H_LA07N J1 h14 D28

135 T10 LVDS_P[27] PDATA_P[27] 29 J4 H_HA12P J1 f13 C15

136 U10 LVDS_N[27] PDATA_N[27] 31 J4 H_HA12N J1 f14 B15

137 R12 LVDS_P[28] Parity_P 33 J4 H_LA09P J1 d14 B30

138 T12 LVDS_N[28] Parity_N 35 J4 H_LA09N J1 d15 A30

139 R13 LVDS_P[29] Sync_P 37 J4 H_HA18P J1 j18 K14

140 T13 LVDS_N[29] Sync_N 39 J4 H_HA18N J1 j19 J14

141 F12 LVDS_P[30] DataClk_P 41 J4 H_HA17_CCP J1 k16 G13

142 D12 LVDS_N[30] DataClk_N 43 J4 H_HA17_CCN J1 k17 F13

143 F8 LVDS_P[31] SysClk_P 45 J4 H_LA15P J1 h19 C24

144 E8 LVDS_N[31] SysClk_N 47 J4 H_LA15N J1 h20 B24

145 F6 LVDS_P[32] Reset_P 49 J4 H_LA16P J1 g18 B27

146 E6 LVDS_N[32] Reset_N 51 J4 H_LA16N J1 g19 A27

147 D6 LVDS_P[33] Read_P 53 J4 H_LA17_CCP J1 d20 F20

148 C5 LVDS_N[33] Read_N 55 J4 H_LA17_CCN J1 d21 E20

149 C4 LVDS_P[34] Shutter_P 57 J4 H_HA23P J1 k22 L12

150 A4 LVDS_N[34] Shutter_N 59 J4 H_HA23N J1 k23 L13

151 C6 LVDS_P[35] CountClk_P 61 J4 H_LA19P J1 h22 G18

152 A6 LVDS_N[35] CountClk_N 63 J4 H_LA19N J1 h23 F18

153 A8 LVDS_P[36] SerEn_P 65 J4 H_LA22P J1 g24 C20

154 A9 LVDS_N[36] SerEn_N 67 J4 H_LA22N J1 g25 B20

155 C9 LVDS_P[37] SerDat2IF_P 69 J4 H_LA29P J1 g30 C17

156 B9 LVDS_N[37] SerDat2IF_N 71 J4 H_LA29N J1 g31 B17

157 E11 LVDS_P[38] SerClk_P 73 J4 H_LA31P J1 g33 G22

158 D11 LVDS_N[38] SerClk_N 75 J4 H_LA31N J1 g34 F22

159 C12 LVDS_P[39] SerDatFrIF_P 77 J4 H_LA32P J1 h37 D21

160 B13 LVDS_N[39] SerDatFrIF_N 79 J4 H_LA32N J1 h38 C21

 TESTPOINTS

 2 J5 H_HA05_N J1 e7 E16

 1 J5 H_HA05_P J1 e6 F15

 4 J5 H_HA09_N J1 e10 E13

 3 J5 H_HA09_P J1 e9 F12

 6 J5 H_HA13_N J1 e13 K16

 5 J5 H_HA13_P J1 e12 L16

 8 J5 H_HA16_N J1 e16 K15

 7 J5 H_HA16_P J1 e15 L15

 10 J5 H_HA20_N J1 e19 J13

 9 J5 H_HA20_P J1 e18 K13

 12 J5 H_LA01__CCN J1 d9 C26

 11 J5 H_LA01__CCP J1 d8 D26

 14 J5 H_LA05_N J1 d12 F30

 13 J5 H_LA05_P J1 d11 G29

 16 J5 H_LA06_N J1 c11 G30

 24

 15 J5 H_LA06_P J1 c10 H30

 18 J5 H_LA10_N J1 c15 C30

 17 J5 H_LA10_P J1 c14 D29

 20 J5 H_LA14_N J1 c19 A28

 19 J5 H_LA14_P J1 c18 B28

 22 J5 H_LA18__CCN J1 c23 E21

 21 J5 H_LA18__CCP J1 c22 F21

 24 J5 H_LA27_N J1 c27 B19

 23 J5 H_LA27_P J1 c26 C19

 25

TimePix_IF Board commanding

The IF boards are commandable via a 16-bit command word:

//Define a bunch of command signals. These will change on the cycle following

// serial_strobe

wire command_count_mode = (setup[15:10] == 6'b0000_00);

wire command_set_matrix_mode = (setup[15:10] == 6'b0000_01);

wire command_set_FSR_mode = (setup[15:10] == 6'b0000_10);

wire command_set_DAC = (setup[15:13] == 3'b001);

wire command_read_ADC = (setup[15:10] == 6'b0000_11);

wire command_read_temp = (setup[15:10] == 6'b0001_00);

wire command_set_LEDs = (setup[15:10] == 6'b0001_01);

wire command_idle = (setup[15] == 1'b1);

 26

KC705 Firmware Address Space

AXI Access to Shutter_control module:

One 32-bit register, write only:

Address offset 0

bits name function

0 ext_trigger_enable High to enable external trigger, low for SW trig

1 soft_trigger Rising edge trigger for shutter sequence

2 force_shutter_low High to hold shutter open (open = logic 0)

3 force_shutter_high High to hold shutter closed (closed = logic 1)

8 reset_ram_addr High to reset RAM address counter, for writing RAM

10:9 ram_select wait_ram = 0, open_ram=1, rate_ram = 2

 11 ram_write Pulse high to write next RAM location

31:16 ram_data 16-bit RAM data

AXI Access to Serial_io module

Two 32-bit registers, write only:

Address Offset 0

bits name function

31:0 Txdata Data to transmit

Address Offset 4

bits name function

0 GO Rising edge to send serial data

1 side High for IF Board A, low for B

6 length High to send 32 bits, low to send 16

8 enable Set high during data transmission

One 32-bit register, read only:

Address Offset 0

bits name function

31:0 Rxdata Data received back from IF board

AXI Access to Timepix_input_module:

One 32-bit register, write only:

Address offset 0

bits name function

0 fifo_reset Assert to reset data collection FIFOs

1 decode_on High to convert from LFSR to binary; low to pass through

2 counter_reset High to reset shutter counters

3 fake_enable

11:4 fake_dav_rate

12 dcm_reset

 27

 Host to KC705 Interface Definition:

UDP command packets, all of 1026 bytes payload length, are sent to port 60001. Data payload

as follows:

byte offset contents

0 command_byte

1 junk

2 to 1025 data

command_byte:

0x03 = read temperatures and ADCs

0x04 = send 16 bits to IF board A, data = {byte1,byte2} ("Big Endian")

0x06 = send 16 bits to IF board B

0x08 = send 264 bits to FSR of chip A0, data = {byte1, ..., byte33}

0x09 = send 264 bits to FSR of chip A1

0x0a = send 264 bits to FSR of chip B0

0x0b = send 264 bits to FSR of chip B1

0x10 = send reset pulse to IF boards

0x11 = send reset pulse to AXI FIFOs

0x12 = send reset pulse to 10GbE core

0x13 = send reset pulse to data reception FIFOs

0x14 = send reset pulse to counters and 10GbE state machine

0b0001_1xxx = send xxx to shutter control reg[2:0]

0b0010_00xx = partial load matrix chip A0, state = xx

0b0010_01xx = partial load matrix chip A1, state = xx

0b0010_10xx = partial load matrix chip B0, state = xx

0b0010_11xx = partial load matrix chip B1, state = xx

0b0011_0000 = write 512 values to shutter WAIT RAM

0b0011_0001 = write 512 values to shutter OPEN RAM

0b0011_0010 = write 512 values to shutter RATE RAM

for these three commands, the 16-bit values are contained in bytes 2-1025, in little-endian

format.

When command_byte==0x03 an echo response packet is produced, sent to port 60001:

byte offset contents

0 ser_no[7:0]

1 ser_no[15:8]

2 junk (due to byte/int alignment in MicroBlaze)

3 junk

4 command_byte, echo

5 to 1029 data, echo

1030 tempA[7:0]

1031 tempA[15:8]

1032 tempB[7:0]

1033 tempB[15:8]

 28

1034 adcA0[7:0]

1035 adcA0[15:8]

1036 adcA1[7:0]

1037 adcA1[15:8]

1038 adcA2[7:0]

1039 adcA2[15:8]

1040 adcA3[7:0]

1041 adcA3[15:8]

1042 adcB0[7:0]

1043 adcB0[15:8]

1044 adcB1[7:0]

1045 adcB1[15:8]

1046 adcB2[7:0]

1047 adcB2[15:8]

1048 adcB3[7:0]

1049 adcB3[15:8]

1050 junk

1051 junk

 29

Pixel Data Format
After each shutter or series of shutters a (~4Mbit) frame of data is collected in the KC705 FIFOs

and is then sent as a series of 64 UDP packets of 8206 payload bytes each. (8248 total bytes,

including 14 Ethernet header, 20 IP header, and 8 UDP header). The first six payload bytes are 0

(padding for the 8-byte MAC interface). The next 8192 bytes of each packet contain pixel data;

the last 8 bytes contain other information, as described here. “serno” is a 12-bit shutter serial

number which increments at each shutter opening; “shutter_time” is the 32-bit time (10ns ticks)

from the (hardware or software) trigger edge to the falling edge of the shutter, and

“elapsed_time” is the 48-bit time, in 10ns ticks (wraps in one month). Note that the data in the

last 8 bytes of packet 31 is different from that of all other packets.

The data from each pixel is a 14-bit quantity; each value is arranged in two consecutive bytes to

facilitate processing in the host. The two extra bits in each 16-bit byte pair are used to indicate

the first datum of a frame, and the detector side from which the data come. In the list below,

A0(x,y) represents the contents of pixel (x,y) for chip A0 (IF board A, chip 0); [a:b] indicates a

bit-select from that value. The data come out in interleaved chunks of 8 values from each of the

two chips per IF board. In each group of eight bytes, one bit contains the "side" bit (= 0 for side

A, 1 for side B), and one bit contains the sync bit (= 1 for the first value of each half-frame). A

parity bit, P, is generated for each pair of values. For instance, P in byte index 9 is 1 if the sum

of ones in the pair of 14-bit values A0(8,0) and A0(0,0) is odd, 0 if the sum is even.

UDP packet 0:

Index Value

6 A0(0,0)[7:0]

7 0,1,A0(0,0)[13:8] bits[7:6] = 01 indicates start of first half

8 A0(8,0)[7:0]

9 P,0,A0(8,0)[13:8]

10 A1(0,0) [7:0]

11 0,0,A1(0,0)[13:8]

12 A1(8,0) [7:0]

13 P,0,A1(8,0)[13:8]

14 A0(1,0)[7:0]

15 0,0,A0(1,0)[13:8]

16 A0(9,0)[7:0]

…

68 A1(15,0)[7:0]

69 P,0,A1(15,0)[13:8]

70 A0(16,0)[7:0]

71 0,0,A0(16,0)[13:8]

…

1028 A1(255,0)[7:0]

1029 P,0,A1(255,0)[13:8]

1030 A0(0,1)[7:0]

1031 0,0,A0(0,1)[13:8]

…

8196 A1(255,7)[7:0]

 30

8197 P,0,A1(255,7)[13:8]

8198 0x6, serno[11:8]

8199 serno[7:0]

8200 elapsed_time[47:40]

8201 elapsed_time[39:32]

8202 elapsed_time[31:24]

8203 elapsed_time[23:16]

8204 elapsed_time[15:8]

8205 elapsed_time[7:0]

UDP packet 1:

6 A0(0,8)[7:0]

7 0,0,A0(0,8)[13:8]

8 A0(8,8)[7:0]

9 P,0,A0(8,8)[13:8]

10 A1(0,8) [7:0]

11 0,0,A1(0,8)[13:8]

…

8198 0x6, serno[11:8]

8199 serno[7:0]

8200 elapsed_time[47:40]

8201 elapsed_time[39:32]

8202 elapsed_time[31:24]

8203 elapsed_time[23:16]

UDP packet 31:

6 A0(0,248)[7:0]

7 0,0,A0(0,248)[13:8]

8 A0(8,248)[7:0]

9 P,0,A0(8,248)[13:8]

…

8196 A1(255,255)[7:0]

8197 P,0,A1(255,255)[13:8]

8198 0x12

8199 0x34

8200 0x5, serno[11:8]

8201 serno[7:0]

8202 shutter_time[31:24]

8203 shutter_time[23:16]

8204 shutter_time[15:8]

8205 shutter_time[7:0]

UDP packet 32:

Index Value

6 B0(0,0)[7:0]

7 1,1,B0(0,0)[13:8] bits[7:6] = 11 indicates start of second half

 31

8 B0(8,0)[7:0]

9 P,0,B0(8,0)[13:8]

10 B1(0,0) [7:0]

11 0,0,B1(0,0)[13:8]

12 B1(8,0) [7:0]

13 P,0,B1(8,0)[13:8]

14 B0(1,0)[7:0]

15 1,0,B0(1,0)[13:8]

16 B0(9,0)[7:0]

…

68 B1(15,0)[7:0]

69 P,0,B1(15,0)[13:8]

70 B0(16,0)[7:0]

71 0,0,B0(16,0)[13:8]

…

1028 B1(255,0)[7:0]

1029 P,0,B1(255,0)[13:8]

1030 B0(0,1)[7:0]

1031 0,0,B0(0,1)[13:8]

…

8196 B1(255,7)[7:0]

8197 P,0,B1(255,7)[13:8]

8198 0x6, serno[11:8]

8199 serno[7:0]

8200 elapsed_time[47:40]

8201 elapsed_time[39:32]

8202 elapsed_time[31:24]

8203 elapsed_time[23:16]

8204 elapsed_time[15:8]

8205 elapsed_time[7:0]

UDP packet 33:

6 B0(0,8)[7:0]

7 0,0,B0(0,8)[13:8]

8 B0(8,8)[7:0]

9 P,0,B0(8,8)[13:8]

10 B1(0,8) [7:0]

11 0,0,B1(0,8)[13:8]

…

8198 0x6, serno[11:8]

8199 serno[7:0]

8200 elapsed_time[47:40]

8201 elapsed_time[39:32]

8202 elapsed_time[31:24]

8203 elapsed_time[23:16]

8204 elapsed_time[15:8]

 32

8205 elapsed_time[7:0]

UDP packet 63:

6 B0(0,248)[7:0]

7 0,0,B0(0,248)[13:8]

8 B0(8,248)[7:0]

9 P,0,B0(8,248)[13:8]

…

8196 B1(255,255)[7:0]

8197 P,0,B1(255,255)[13:8]

8198 0x6, serno[11:8]

8199 serno[7:0]

8200 elapsed_time[47:40]

8201 elapsed_time[39:32]

8202 elapsed_time[31:24]

8203 elapsed_time[23:16]

8204 elapsed_time[15:8]

8205 elapsed_time[7:0]

 33

C Language Library

Extract from the TimePixInterface.h header file describing the functions available to the user

appears below. The intent is to encapsulate the details of the lower-level interfaces, described

later, in this library. Comments below describe the functions.
///

//Functions to be called by user

//
//Starts up the Winsock connection, starts RxHKData thread, creates KC705 Socket

int Connect(const char* pcHost, int nPort);

//Closes the KC705 socket

int Disconnect();

//Read temp sensor from ASIC board (selected by global "which_side" variable)

// returns temp in degrees C

double readtemp();

//Pulse the ASIC RESET line to both IF boards, so resetting all ASICs

bool sys_reset();

//Pulse the 10GbE core RESET line high then low

bool tengbe_reset();

//Pulse the shutter control "GO" bit high then low

bool pulse_shutter();

//Force the shutter open (true) or stop forcing it (false)

bool force_shutter(bool open);

//write a value between 0 and 1023 to a channel between 0 and 7
//returns false if something goes wrong, including if either parameter

// is out of range

bool write_dac(int channel, int value);

//writes a value to location 0 of the shutter timing control BRAM, LS 16 bits

// returns false if anything goes wrong, including if the
// value is out of range (0 to 65535)

bool set_wait(int wait);

//writes a value to location 0 of the shutter timing control BRAM, MS 16 bits

// returns false if anything goes wrong, including if the

// value is out of range (0 to 65535)

bool set_open(int open);

//writes a value to location 0 of the shutter rate control BRAM, MS 16 bits

// returns false if anything goes wrong, including if the
// value is out of range (0 to 15)

bool set_rate(int value);

//Write values to all 256 locations of rate_ram.

bool load_rate_ram(int * rate_array);

//Write values to all 256 locations of rate_ram.
bool load_shutter_ram(unsigned int * open_array, unsigned int * wait_array);

 34

//writes a value to the packet_wait register, 0 to 255, causing readout

// data to be slowed by a factor of value
bool set_skip(int value);

//Read a value from one of the 4 ADC channels, 0 to 3.
// Returns a 12-bit value with approximately 2200mv full scale,

// or a -1 if something goes wrong

int read_adc(int channel);

//Set the "SIDE" bit to 0 or 1, to determine which

// of the two pairs of ASICs is being addressed

//Argument can be 0 or 1 only
bool set_side(int side);

//Set the data mode bits in the control register
bool set_mode(int mode);

//Set the GO bit in the control register

bool set_GO(int GO);

//Start up the 10GBe tap server with IP address IP and port port

bool tap_start(int IP, int port);

//Check the even parity of numwords 32-bit words in raw binary file saved by WireShark

// returns number of errors.
int parity_check(const char * filename, int numwords);

//Read in the raw binary file (saved by Wireshark). Convert to 14-bit values (4 per 64
bytes)

// represented in ascii hex

void convert_to_values(const char * infile, const char * outfile);

//Read in the raw binary file (saved by Wireshark). Convert to 14 bit values, and

compare

// the data from chip n (0 or 1) to the 256 by 256 matrix argument.
unsigned int * check_matrix(const int * pmatrix, int chip, const char * infile, int

write_log);

//Load the 256*256 14 bit values from int array "data[256][256]", into the serial_data_in

ram

//returns true if all OK

bool load_matrix_ram(const int * data);

//send the data from the serial_data_in ram to chip (0 or 1)

bool load_matrix(int chip);

//Set the ASICs back in count mode. Do this before taking data or reading back the

matrix,
// so that the ASIC clock pair is no longer controlled by the ROACH.

// One command sets both ASICs

bool count_mode(void);

//Load the 256 bit data, from char array "data", into the Fast Shift Register of one chip

//returns the chip ID, and 999 if something went wrong

int load_FSR(const char * data, int chip);

 //Turn the LFSR-to-binary decode function on (1) or off (0)
bool set_decode(int decode);

 35

//Set or clear the IGNORE bit. When set, this causes the input FIFOs to
// ignore any incoming data (but does not clear them)

bool set_ignore(int ignore);

//Check one of the firmware parity counters:

// 0=ZDOK0, chip0; 1=ZDOK0, chip1; 2=ZDOK1, chip0; 3=ZDOK1, chip1

// returns number of errors

int check_parity_counter(int whichone);

 36

TimePix DashBoard GUI

Connect to Roach

Establishes the socket connection to the Roach

Load FPGA with foo.bof

The compiled Roach firmware is contained in a .bof file, in the /boffiles directory of the Roach

operating system. Rename this file “foo.bom” and ensure that the “execute” permission is set;

then, this button commands the Roach to load the FPGA file

System Reset

Pulses the RESET bit of the control register, sending a reset pulse to the IF boards.

Start 10GbE core

Issues the “tap-start” command to the Roach

10GbE Reset

Pulses the RS_10G bit of the Control register, resetting the 10GbE core.

Side A/B

The button selects whether the commands are sent to IF board A (controlled from Roach ZDOK

0) or IF board B (ZDOK 1).

Set DAC

Enter a value from 0 to 1023 and select a channel from 0 to 7, then click the button. Channel 0 is

the TEST_HI level to the ASIC board, channel1 is the TEST_LO, and the remaining six are

available on the IF board.

Read ADC

 37

Select a channel and click the button. 12-bit ADC value is displayed. Channel 0 is the

DAC_OUT level from ASIC 0; channel 1 from ASIC 1. Ch 2 is the IF board 2.2v supply (ADC

full scale is 3.3v, so Ch 2 should measure about 2.2/3.3 * 4096 = 2730). Ch 3 is the IF board 5v

supply divided by 3, so should measure about 2048 counts. (Ch 2 and Ch 3 can be used for other

purposes by removing the jumpers on the IF board).

LED control

Check the enable box to allow IF board LEDs D2 and D3 to be turned on and off via the other

two check boxes. If the enable box is unchecked, D2 will flash each time a command is sent to

the IF board, and D3 will flash each time a packet is sent back to the ROACH

Shutter Wait/ Shutter Open/ Rate

Enter values for the first location of the shutter_ram and the rate_ram. These values set the

width and delay of the shutter pulse, and the count clock frequency during the pulse, as described

below. Only the first ram location is accessible.

Pulse Shutter

In Medipix mode, click this button to produce a single shutter pulse.

Data Modes

Only Medipix mode (software control of the shutter) is supported so far.

Load FSR

Send 256 bits to the Fast Shift Register of one ASIC. The data contents and the ASIC select are

hard-coded at this point (just for debug).

Load Matrix Data

Take a 256 by 256 array of 14-bit values, transform to the appropriate bit stream, and load into

the serial_data_ram. Data contents are hard-coded for debug.

To Chip0/ Chip1

Send the “Set Matrix” command to one or the other ASIC, which causes the data loaded into

serial_data_ram to be sent out to the ASIC.

Parity check c:\foo

Check the parity of the binary file foo stored in the root of the C: drive. This would have been

stored by the WireSharq “Follow UDP stream” function, in raw binary format.

Convert c:foo to fooval

Convert that binary file to an ASCII text file consisting of four columns of 14-bit values.

 38

 Operating Modes

Below are described the several basic system functions and the host�� Roach interactions

necessary to perform them.

Initialization

Host sets all bits of the control register to 0.

Host pulses RESET

Wait 5 sec

Host pulses RS_10G

Wait 5 sec

Set up Matrix

Each of the four sensor chips has a 256-by-256 matrix of 14-bit registers which controls the

operating characteristics of each pixel. Eight bits of each 14 are used; the other 6 are ignored.

The bit assignments are as in Fig 35, p34 of the Timepix Manual. The arrangement of the

256*256*14 = 917,504 bits required to set each chip up is shown in Table 16, p44. I’ll follow

the bit-naming convention used there.

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0400_0000 Send “SetMatrix0” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 10 Set to send long packet

host � Roach SetupIn <= matrix data 917,512 bits for ASIC A0

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0600_0000 Send “SetMatrix1” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 10 Set to send long packet

host � Roach SetupIn <= matrix data 917,512 bits for ASIC A1

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

host� Roach SIDE <= 1 Select the other IF board

host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0400_0000 Send “SetMatrix0” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 10 Set to send long packet

host � Roach SetupIn <= matrix data 917,512 bits for ASIC B0

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0600_0000 Send “SetMatrix1” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 10 Set to send long packet

host � Roach SetupIn <= matrix data 917,512 bits for ASIC B1

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

 39

Set up FSR registers/ read device IDs

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0800_0000 Send “SetFSR0” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 01 Set to send medium packet

host � Roach SetupIn <= fsr data 264 bits for ASIC A0

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

Roach� host SetupOut <= device ID A0

host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0A00_0000 Send “SetFSR1” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 01 Set to send medium packet

host � Roach SetupIn <= fsr data 264 bits for ASIC A1

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

Roach� host SetupOut <= device ID A1

host� Roach SIDE <= 1 Select the other IF board

host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0800_0000 Send “SetFSR0” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 01 Set to send medium packet

host � Roach SetupIn <= fsr data 264 bits for ASIC B0

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

Roach� host SetupOut <= device ID B0

host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’h0A00_0000 Send “SetFSR1” command to IF board

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

host � Roach LENGTH <= 01 Set to send medium packet

host � Roach SetupIn <= fsr data 264 bits for ASIC B1

host� Roach GO_SET <= 1 Transition sends packet

host� Roach GO_SET <= 0

Roach� host SetupOut <= device ID B1

Set DAC

Send a 10-bit value to one of the 8 DAC channels (channels 0 and 1are used to set the High and

Low Test Pulse levels, the other 6 channels are brought out to header J5 on the IF board)

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’hyyyy_0000 Send “SetDAC” command to IF board

 16-bit field yyyy = {001,DACADD[2:0],DACVAL[9:0]}

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

Set IF board LED

Turn on/off D2 and/or D3 (D1 is the “FPGA DONE” LED)

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’hyyyy_0000 Send “SetLED” command to IF board

 16-bit field yyyy = {000101, LEDENABLE, LED[1:0], X[6:0]}

 LEDENABLE = 1 gives control of the LED,

LEDENABLE = 0 gives the LEDs other functions

X = don’t care

host� Roach GO_SET <= 1 Transition sends packet to IF

 40

host� Roach GO_SET <= 0

Read ADC

Read a 12-bit value from one of the 4 ADC channels. Channel 0 is the “DAC_OUT” of ASIC0,

channel 1 the “DAC OUT” of ASIC1.

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’hyyyy_0000 Send “ReadADC” command to IF board

 16-bit field yyyy = {000011, ADC_CHAN[1:0],X[7:0]}

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

wait at least 25us

host � Roach SetupIn <= 32’hyyyy_0000 Send “ReadADC” command to IF board

 16-bit field yyyy = {000011, ADC_CHAN[1:0],X[7:0]}

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

Roach� host SetupOut <= ADC value

(Command is sent twice. First command sets the ADC multiplexer; second reads the value.)

Read Temperature

Read the 16-bit temperature value from one of two temp sensors on the ASIC board, one

associated with each IF board

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach LENGTH <= 00 Set to send short packet

host � Roach SetupIn <= 32’hyyyy_0000 Send “ReadTemperature” command to IF board

 16-bit field yyyy = {000100, X[10:0]}

host� Roach GO_SET <= 1 Transition sends packet to IF

host� Roach GO_SET <= 0

Roach� host SetupOut <= temperature

Read Back Matrix Data

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach DATAMODE <= 4’h0 Select “Matrix Read” mode

host � Roach Shutter_time in[0] <= {32’h0} Flag to indicate end of data

host � Roach GO <= 1 Initiate counting/readout operation

Matrix data will appear as UDP packets in the pixel data stream

Data acquisition/readout: “Medipix” mode

PC tells the system “Integrate with clock R for Ts ms”, then issues a “GO” command. System

opens shutter for the desired time, reads out data, and passes it to the PC.

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach DATAMODE <= 4’h1 Select “Medipix” mode

 41

host � Roach Shutter_time in[0] <= {Ts(16 bits), 16’h0} Set up shutter time

host � Roach Shutter_rate in[0] <= {28’h0, rate} Set up count rate

host � Roach Shutter_time in[1] <= {32’h0} Flag to indicate end of data

host � Roach GO <= 1 Initiate counting/readout operation

 42

Data acquisition/readout: “Triggered Medipix” mode.

PC tells the system a clock rate, start time, relative to a trigger, a stop time, and a number of

shutter openings, then issues a “GO” command. System controls the shutter as commanded, then

reads out the data (once only) and passes the data to the PC.

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach DATA_MODE <= 4’h2 Set to triggered mode

host � Roach Shutter_time in[0] <= {Ts1, Tw1} Set up shutter time

host � Roach Shutter_rate in[0] <= {28’h0, R1} and count rate for each trigger

host � Roach Shutter_time in[1] <= {Ts2, Tw2}

host � Roach Shutter_rate in[1] <= {28’h0, R2}

…

host � Roach Shutter_time in[n-1] <= {Tsn, Twn}

host � Roach Shutter_rate in[n-1] <= {28’h0, Rn}

host � Roach Shutter_time in[n] <= {32’h0} Flag to indicate end of data

host � Roach GO <= 1 Initiate counting/readout operation

 43

Data acquisition/readout: “Sparsified XYT” mode

PC sends to the system a set of N parameter trios to control the time and clock rate for each

shutter opening. The system controls the shutter as commanded, reads out the data following

each shutter closure, removes all “0” count data, and passes the data back to the PC, in event-list

form X, Y, T for each event. X and Y are the (9-bit) pixel location values, and T is a 15-bit

value calculated from the pixel contents and the Bn, En, Rn parameters.

Start with all control bits set to 0.

Data transfer Roach register Comment
host � Roach DATA_MODE <= 4’h3 Set to sparsified mode

host � Roach EN_SET <= 1 Enable the setup link

host � Roach SetupIn <= 0x0000_0000 Send “ReadMode” command to IF board

host � Roach EN_SET <= 0 Falling edge causes command to take effect

host � Roach Shutter_time in[0] <= {Ts1, Tw1} Set up shutter time

host � Roach Shutter_rate in[0] <= {28’h0, R1} and count rate for each trigger

host � Roach Shutter_time in[1] <= {Ts2, Tw2}

host � Roach Shutter_rate in[1] <= {28’h0, R2}

…

host � Roach Shutter_time in[n-1] <= {Tsn, Twn}

host � Roach Shutter_rate in[n-1] <= {28’h0, Rn}

host � Roach Shutter_time in[n] <= {32’h0} Flag to indicate end of data

host � Roach GO <= 1 Initiate counting/readout operation

 44

Roach �������� Interface Board

Electrical interface consists of 40 pairs terminated in a QSH-040-01-F-D-DP connector (Samtec)

at both ends; cable is SamtecHQDP-040-length-TBR-SBL-1

Electrical levels are LVDS

Pair Name Function I/O (rel ROACH)

0-27 PData Pixel Data from ASICs I

28 Parity Parity bit for error checking I

29 Sync Pixel data sync- marks beginning of dump I

30 DataClock Pixel Data Clock I

31 SysClk Master system clock (100MHz CW) O

32 Reset System Reset O

33 Read Pulse high to start pixel data read out O

34 Shutter High to integrate O

35 CntClk ASIC count clock, programmable freq O

36 SEnable High to enable serial (housekeeping) link O

37 SDataOut Serial (HK) data to IF board O

38 Sclk Serial (HK) clock O

39 SDataIn Serial (HK) data from IF board I

 -

 45

Operating modes

1. Counting mode

A “COUNT” command sent over the serial link sets the ASIC mode bits to 11 and switches the

FCLK to the CntClk frequency, then the SHUTTER signal enables the ASIC counting function.

Other control lines to the ASICs are quiet.

 46

2. Pixel Readout

A single pulse on the READ line starts the readout. ASIC mode bits are forced to 00 and FCLK

is switched to 100MHz. The pixel data is read out of the ASICs at 100MHz. At the end of the

readout period, FCLK is returned to the CntClk rate, and mode is switched back to 11 (counting

mode).

Data is clocked into the ROACH at 112.5 MHz double data rate, so 225Mb/s. This allows the

data transfer to almost keep up with the input data from the two ASICs: 2 chips * 32 bits *

100MHz = 6.4Gb/s input rate. A sync bit and a parity bit are added to each pair of (14-bit)

counters, so the output rate is 15/14 of this, or 6.857Gb/s. Transmitted over 30 pairs, this

requires a clock of ½ * 6857/30 = 114.28MHz. Clocking at 112.5 MHz causes the FIFO to fill a

little bit (there is not enough memory in the Spartan to buffer the entire approx 2Mbits of pixel

matrix data).

 47

3. Setting the matrix

The SETMATRIX0 command is sent via the 3-wire serial link, which causes the FCLK, ENIN0,

and DATA_IN signals to the ASIC to be driven from the SCLK, SENABLE, and SDATA lines.

The 917,504 bits of matrix setup data are shifted out to ASIC0, then the process is repeated with

the SETMATRIX1 command, to set up ASIC1.

 48

4. Setting the FSR register and read back the device ID

As above, but the mode lines are set to 01. The identity bits are read out of each ASIC

 49

5. Set/Read housekeeping data

This is used to set up the DAC values (which control the levels of the test pulser), the

ENABLE_TESTPULSE control to the ASICs, and any other function we might need. Also to

read back the ADC and temp sensor data. One of the SET_HK commands is sent via the 3-wire

link; in the case of the ADC or temp sensor, the output data is sent back via the SDATAIN line.

Serial commands (16 bits each):
0000_00ab_xxxx_xxxx Count Mode, set POL to a, ENABLE_TP to

b

0000_010x_xxxx_xxxx Set Matrix0

0000_011x_xxxx_xxxx Set Matrix1

0000_100x_xxxx_xxxx Set FSR0

0000_101x_xxxx_xxxx Set FSR1

0000_11aa_xxxx_xxxx Read ADC channel aa

0001_00xx_xxxx_xxxx Read Temp

0001_01ea_bxxx_xxxx Set IF board LEDs:

e = enable, set to 1 to command LEDs

(else they have soft functions)

a = LED D2 (1 = on)

b = LED D3 (1 = on)

001a_ aabb_bbbb_bbbb Set DAC channel aaa to value

bb_bbbb_bbbb

 50

Documents
Top Assembly BOM and Drawing tree (EAG-QTD-013):

Quad TimePix Detector System

Top Assembly Bill of Materials

Qty Description Source Part or Dwg Number Dwg Type Notes

1 ASIC PCB build EAG_QTD_007.xls BOM

ref Evenstar EAG-QTD-008.zip PCB fab dwg and files

This PCB has a major problem with
the layout of the voltage regulators.
We'll probably respin rather than
build more like this.

ref EAG-QTD-009.zip PCB assy dwg & files

ref EAG-QTD-006.pdf schematic, 2 shts

2 IF PCB build EAG_QTD_003.xls BOM

See assembly notes on worksheet 2
of the xls. These two items should be
addressed when more PCBs need to
be fabbed.

ref Evenstar EAG-QTD-004.zip PCB fab dwg and files

ref EAG-QTD-005.zip PCB assy dwg & files

ref EAG-QTD-002.pdf schematic, 2 shts

2
Enclosure
for IF Board Compac-RF TimePixIFBox.pdf sketch

This needed mods- review before
reordering.

2 Flex PCB Samtec
SCDL-101368-3-LSH-LSH-
1

Samtec Source Control
Dwg

I believe this is a unique SCD
number, assigned by Samtec when I
ordered this custom flex PCB. But it
would be good to check before
ordering more.

2 Cables Samtec
HQDP-040-40.00-TBR-
SBL-1 Standard Samtec PN

2
ZDOK
Adapter Sunstone TimePix Adapter.123 PCB design file

This is a proprietary design format
from Sunstone. No schematic exists

 ZDOK_adapter.pdf Schematic

1

Voltage
Regulator
Board build TIMEPIX_POWER.BOM.xls BOM

 expressPCB PowerPCB.pcb Express PCB design file Proprietary ExpressPCB format

 TimePix Power PCB.pdf schematic

 51

1 Power Cable build TimePixPowerCable.pdf schematic

1 Roach Board Digicom "Roach Board Assembly" We supplied the FPGA to Digicom

1
FPGA for
Roach Xilinx XC5VSX95T-1136 Xilinx donated 2 of these

1
Enclosure
for Roach ProtoCase roach_case_rev1.cas Enclosure design file

A proprietary design format from
ProtoCase. This should be revisited
before buying more- there were some
mods to be done.

1
Power
supply Digikey 237-1307-ND 12vdc 150W supply. Nothing special

1
Power
supply MiniBox PicoPSU-120

 52

Schematics

ASIC Board, sht 1 of 2

 53

ASIC Board, sht 2 of 2

 54

TimePix IF Board, sht 1 of 2

 55

TimePix IF Board, sht 2 of 2

 56

TimePix Voltage Regulator PCB

 57

TimePix Power Cable

 58

ZDOK Adapter schematic

 59

Parts Lists
Quad TimePix Detector (QTD) Revised: 4/7/10

Qty Comp Designator Value Pkg Order#

4 C1,C9,C34,C37 470pF 0603 478-3720-1

7 C2,C25,C26,C38,C47,C54,C71 100uF tantalum 7343-20 495-1593-1

10 C3,C22,C24,C28,C35,C39,C46,C49,C63,C69 10uF ceramic 0805 399-3138-1

6 C4,C23,C29,C36,C40,C48 0.01 0603

36

C5,C6,C7,C8,C10,C11,C12,C13,C14,C15,C16,C17,C18,C19,C20,

C21,C30,C31,C32,C33,C41,C42,C43,C44,C50,C51,C52,C53,C55,

C56,C57,C58,C59,C61,C65,C67 1nF 0402 445-4924-1

8 C27,C45,C60,C62,C64,C66,C68,C70 0.1 0603

2 J1,J2 LTH-050-01-G-D-A-TR like IF board

1 J3 four SM pads

2 J4,J6 two SM pads

2 R1,R85 4.53k 0603 P4.53KHCT

4 R2,R72,R82,R86 4.99k 0603 P4.99KHCT

6 R4,R6,R73,R79,R87,R105 zero 0603 P0.0GCT

128

R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,R21

,R22,R23,R24,R25,R26,R27,R28,R29,R30,R31,R32,R33,R34,R35

,R36,R37,R38,R39,R40,R41,R42,R43,R44,R45,R46,R47,R48,R49

,R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,R60,R61,R62,R63

,R64,R65,R66,R67,R68,R69,R70,R8 49.9 0603 RMCF1/1649.9FRTR

2 R71,R81 6.04k 0603 P6.04KHCT

4 R74,R75,R84,R122 SAT 0603

4 R155,R156,R157,R158 100 0603 P100HCT

4 U1,U2,U3,U4 TimePixAsic chip on board

2 U5,U7 LM73 SOT23 LM73CIMK-1CT

2 U6,U8 MAX4634 MSOP10 MAX4634EUB+

4 U9,U10,U11,U12 LP3878 LLP LP3878MR-ADJ

4 U13,U14,U16,U17 MAX9174 MSOP10 MAX9174EUB+

2 U15,U18 LD1117S33CTR SOT223 LD1117S33CTR
ASIC Board

 60

TimePix Interface Board BOM

RR April 8, 2010

SEE ASSEMBLY NOTE ATTACHED

Qty RefDes Value Pkg

1 3 C1,C3,C6 10uF/6.3V 0805 511-1488-1

2 3 C2,C4,C5 0.1 0603

3 24

C9,C10,C11,C12,C13,C14,C15

,C16,C17,C18,C19,C20,C21,C

22,C23,C24,C25,C26,C27,C28,

C29,C30,C31,C32 0.01 0603

4 1 D1,D2,D3 LED 0805 160-1176-1

6 1 J1 LTH-050-01-G-D-A-TR see datasheet

7 1 J2 QSH-040 see datasheet QSH-040-01-F-D-DP-A

8 1 J3 HEADER 7X2 2mm spacing H1813

9 2 J4,J5 HEADER 6X2 .1" spacing part of S2012e-36

10 1 J6 screw4 see DS ED1516

11 1 J7 HEADER 2X2 .1" spacing part of S2012e-36

12 1 J8 HEADER 8X2 .1" spacing part of S2012e-36

13 1 R1 zero 0805 p0.0ACT

14 1 R2 DNP 0806

15 1 R3 100 0807 P100ACT

16 2 R5,R9 10k 0808 P10.0KCCT

17 2 R6,R7 20k 0809 P20.0KCCT

18 1 R12 121 0810 P121CCT

19 1 R13 121 0811 P121CCT

20 1 R14 91 0812 P91CCT

21 1 U1 XC3S400AN-4FGG400C FG400 122-1554-ND

22 1 U2 LD1117S12TR SOT223 497-6974-1

23 1 U3 LTC1660 SSOP16 LTC1660CGN#PBF

24 1 U4 LD1117S33CTR SOT223 497-1241-1

25 1 U5 LD1117SCTR SOT223 497-1229-1

26 1 U6 ADC124S021 MSOP10 ADC124S021CIMMCT
Interface Board

 61

ZDOK Adapter BOM

QTY Desc Source PN

1 PCB Sunstone TimePix Adapter.123

1 ZDOK Tyco 6367555-3

1 Samtec Samtec QSH-040-01-F-D-DP-A
ZDOK Adapter

TimePix Power Regulator PCB Revised: Thursday, May 20, 2010

Item Quantity Reference Part DK Order Number

__

1 10 C2,C3,C5,C6,C7,C9,C11,C12,C13,C14 100uF 16v 445-3485-1

2 4 C4,C8,C10,C15 1000uF 6.3v 493-3774-1

3 1 J1 screw4 ed1516

4 1 J2 HiRose 2.5mm H3638

5 1 R1 169

6 2 R2,R4 zero

7 1 R3 2k

8 4 R5,R6,R7,R8 10

9 2 U1,U2 PTH08T261W 296-21539

Receptacle for power H3787

contacts for above H3830

InLine plug (use at detector) H3689

contacts for above H3829
Voltage Regulator Board

 62

Hardware Fabrication History

ASIC Boards

We fabbed 25 PCBs April 2010, and assembled and wirebonded four, I think. These have the voltage regulator layout problem, and

we retrofitted two of the boards with piggybacked voltage regulators, which was a not-very-satisfactory fix.

IF Boards

We fabbed 20 of these PCBs and assembled 5. One at least has a problem with shorted pairs on the QSH connector.

ZDOK adapter

Fabbed 12 PCBs, assembled 4. One has a shorted-pair problem.

Voltage regulator PCBs

Fabbed 6 PCBs, assembled one.

Flex PCBs

Purchased 27 of these (Samtec lot charge)

Roach Enclosures

Fabbed two. These needed some mods to make things line up.

IF Board Enclosures

Fabbed 8 of these. Also needed some mods.

