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I’ve tested and shipped two prototype systems. 

 
Power board is at the left, main board at the right.  The power board folds over; the tall 

module is the “Latchup Current Limiter” (LCL) which extends a little bit through the 

square hole when the boards are separated by 0.5” spacers.   



 
RF enters on the SMA, the two MDM connectors connect to a “GSE” board which has 

some level translators for the LVDS, and connections to two serial ports and two SPI 

interfaces: 

 
The BNCs on the GSE board are used to bring in the 1PPS and VFC signals.  The UART 

connections are designed to connect to an FTDI USB-to-serial adapter: 



 
The SPI connections at right are for probing, or connection to peripherals.  +5v for the 

whole system comes in on the twisted pair. 

 

The red wires are the addition of the second SPI link, as well as to correct a pinout error 

on the reset supervisor: 

 
 



Firmware 

I made a Zynq design with some standard peripherals and a custom IP block to receive 

the data from the ADC.  The standard periperals include 2 UARTs, one I’ve called 

“Science” and the other “GSE”, two SPI interfaces (one with three SlaveSelect  lines, for 

the PLL chip, the ADC chip, and one of the external SPIs, the other for the second 

external SPI), and one IIC interface (for the temperature sensor).  Another custom 

peripheral counts pulses on the VFC input. 

  
 

I’ve written a python 3.x script, “CubeSat_SCI_IF.py” to communicate with the system 

via the “Science” UART: commands can be sent (for writing registers, etc) and data can 

be dumped.  The “GSE” UART is used to received a command and respond with a basic 

housekeeping packet.  A separate python script, “CubeSat_GSE_IF.py” is used. 

 

 
 

 



Basic Functionality: 

After power-up, the PLL must be set up, using a sequence of writes to the on-chip 

registers; this is done by typing “P” in response to the prompt. 

 
PLL output (ADC clock input).  About +1dBm at 1GHz into 50ohm spectrum analyzer 

 

Similarly, the ADC needs to be set up by typing “A”.  A series of register writes sets the 

proper data multiplexing, etc; single register writes can also be used to set gain and offset 

of the two interleaved converter cores. 

Typing any other character causes a 1000-sample data series to be stored in 

C:\Data\CubeSat_out.csv. 

 

The firmware core simply acquires a 1k-by-64 bit buffer of data, 8k 8-bit samples in all, 

and signals to the processor that data is ready.  The processor then sends the bytes via the 

SCI UART.  (This UART is operating at 115.2 kbaud, though it is supposed to be 460.8; 

my USB cable is limited to 115.2.  The baud rate can be set in the Zynq software). 

 

A typical snapshot of 1k samples of a 20MHz 700mvpp input: 
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Power draw is 1.48A at 5.0v. 

 



Data Transfer Robustness 

The ADC provides a source-synchronous 250MHz data clock along with the 32 data 

lanes, each of which transfers data at 500Mb/s.  The clock transitions at the same time as 

the data (although the ADC provides the option of setting the clock to transition in the 

middle of the data eye, register-selectable).  An MMCM in the Zynq programmable logic 

generates a 90 degree phase-shifted version of the data clock to register the incoming data 

into the IDDR registers.  Due to the potential variations in FPGA timing over process, 

voltage, and temperature, there is no fixed phase shift setting that can meet the timing 

constraints (the data eye, with zero transition time, is only 2ns; the variation of delays 

over PVT is something like 3 ns).  To try to demonstrate timing margin I generated bit 

files for MMCM delays of 0, 45, 135, and 180 degrees as well (you can do this without a 

recompile by editing the FPGA manually before generating the bitstream).  Each step is 

0.5ns; all seemed to transfer data cleanly: 
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0 degrees 

0

50

100

150

200

250

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970

 
45 degrees 
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135 degrees 
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180 degrees 

 

I think this was a valid test, though I might have been kidding myself somehow.  This 

should be looked into more closely, I think, with finer stepping.  It could be that the 

transition times of the signals are so short that I missed the noisy zones.  It may be that 

dynamic control of the MMCM phase will be necessary. 

 

Peripherals 
The temperature sensor on the board and the one in the FPGA are both read out 

successfully from the GSE UART.  The ADC has a temperature diode in it that I 

connected to the XADC (FPGA internal ADC); so far this seems to read out 0 always, 

although the voltage is about 700mv.  I think I perhaps haven’t found the right way to 

access that channel.  The XADC provides the FPGA die temperature, and this is working. 

 



Latchup Current Limiter 

The LCL from 3D-Plus monitors the current drawn by the FPGA’s VCCAUX (1.8v); in 

the event of an SEU, this current may increase and stay there.  The LCL senses the 

current; when it exceeds a resistor-set threshold, it interrupts the current and signals a 

fault.  I measured the VCCAUX current at 196mA for the system when up and running, 

and set the LCL threshold at 300mA.  But in this configuration, the system would not 

start up.  The Zynq requires more startup current than this (the datasheet seems to say it 

requires about 600mA during startup).  I found that I had to set the threshold to about 

1.3A to get it to start up.  The LCL has two thresholds controlled by a pin; these are 

designated “RUN” and “STANDBY”.  We could perhaps set this signal to RUN during 

startup and STANDBY thereafter; maybe this could be controlled by a proper pull-up on 

the control line during configuration, which would then be driven low.  When we know 

the VAUX current draw of the flight design we can consider this more carefully. 

 

Reset Supervisor/Watchdog 

After fixing my pinout error on this chip, it provides the proper POR signal which 

brackets the rise-time of all of the supplies.  The watchdog part of the chip, which senses 

a transition (either direction) on its input and asserts an output if such a transition has not 

been sensed in about 1.6 sec, also works, but prevents the startup of the system (because 

no transitions are being generated during power-up and configuration the reset is asserted, 

preventing the system from starting up).  I’m not sure what to do with this.  I removed 

R45 to disable this functionality. 

 
 

Configuration Flash 

The NAND Flash chip itself (128M * 8 bits, 1Gb) works; I've built and run a Xilinx-

provided program "xnandpsexample" and can see that data is written and read back 

correctly.  Also, I've compiled and run the necessary "First Stage Boot Loader" program, 

whose job it is to read the flash on boot-up and copy both the Programmable Logic 

configuration file to the PL and the application executable to execution memory (in our 

case that would be the 192k On-Chip Memory).  But I have not been able to program the 

flash itself.  Therefore the FSBL runs, but can't do its job, because there's nothing in the 

flash. 

 

There are two utilities that are usually used to program flash devices: the 

"program_hw_cfgmem" tcl command available in Vivado, and the "program_flash" 

utility available through SDK.  When I run either of these I receive an error "Problem in 

running uboot".  Uboot is, I think, a second-stage bootloader typically used to load much 



larger software images, eg, Linux.  I think that both of these programs require a Zynq 

system with some reasonable amount of processor memory- the image being loaded 

might be many GB, and I can imagine that one would want a buffer of at least many 

MB.  In any event neither of these runs on our system (I've successfully programmed the 

QSPI on a zedboard using these). 

 

Since I can write the flash under program control it might be possible to just write the 

boot image byte-by-byte (to write our own "program_flash") but I suspect this might be a 

big project- the NAND flash has a whole system for managing bad blocks that has to be 

understood and managed.  But I realize this brings up a bigger issue.   

 

The FSBL performs some necessary steps.  For instance, it includes a call to the 

ps7_init() function which sets up the Zynq processor clocks, IO, etc.  Also, it needs to 

ascertain what sort of boot device is being used (by reading the boot jumpers) then read 

some registers in the NAND device to determine other operating parameters (size, speed, 

etc) of the particular device, and it must read the configuration bitstream and write it to 

the PL via the PCAP (Processor Configuration Access Port).  As it stands, my FSBL 

occupies about 156kB of the total available 192kB of OCM.  It should be possible to 

reduce this (for instance, since we only have to access one type of boot device we can 

hard-code this and eliminate the reading of this information from the registers), but I 

don't know how far. 

 

So I wonder what sort of program we anticipate running in the Zynq processor?  If it's 

only servicing the two UARTs, as my test loop does, it won't require a lot of 

memory.  But I think part of the whole purpose of the Zynq system was to do some sort 

of Single Event Mitigation, where the processor is continually reading the configuration 

logic and updating it, when necessary, by comparing with an image read from the 

flash.  This might require some complexity. 

 

So, to sum up, I'm stuck on programming the flash, due to lack of DDR.  And I wonder if 

we solve that problem will we have enough program store to run whatever code is 

necessary.  I note that the CHREC Space Processor board has 512MB of commercial 

DDR. 

 

 

Power Sequencing 

The Zynq has specific sequencing recommendations; the VCCINT (1.0) should come up 

first, followed by VCCAUX (1.8),  then VCCO.  These are shown in the scope photo 

below; the PORb signal, not shown, is asserted low during the ramp time and released 

about 200ms later. 

 



 
VCC10 yellow, VCC18, VCC18AUX, VCC19, VCC31 

 

Migration to a flight design 

A few PCB design issues need to be fixed: the two pinout errors mentioned above, and 

the SMA footprint, which required some adjustment. 

 

The NAND boot issue needs to be resolved, either by figuring out how to program the 

flash without DDR memory, or by adding some DDR. 

 

Power Converters need to be replaced with rad-hard equivalents, which will require 

PCB design changes as the footprints are different. 

The LTM4619IV#PBF 1.0v switching converter could be replaced with the PE99153 6A 

converter from e2v. 

The LT1959 switching converter used to make 1.9v can be replaced with the 

MSK5048RH, which incorporates the RH1959 die, diodes and power inductor. 

The two LT3083 LDO regulators, making 3.1v and 1.8v, can be replaced with the 

MSK5986RH, which incorporates the RH3083 die. 

 

The Reset Supervisor needs to be replaced.  The prototype part used, TPS-3705-30, is 

not available in a rad-hard version.  This part is designed for use with a 3.0v supply; here, 

we use it to monitor 3.1v.  This supply voltage was chosen to be compatible with all of 

the following: the FPGA IO supply, the LMX2531 PLL (range 2.8 to 3.2), the crystal 

oscillator, the NAND flash (3.0 to 3.6), the LVDS transceivers (3.0 to 3.6).  



The reset supervisor performs two functions.  The critical function is to assert the 

POR_RESETb input of the Zynq low while the power supplies are coming up; if this is 

not done, the Zynq will not start up at all.  A secondary function is that of watchdog 

supervisor: if the watchdog input is not toggled every second or so the watchdog output is 

asserted, which can perform a soft re-boot of the Zynq processor.  I didn’t implement the 

software for the watchdog function, but we may want this in a flight system. 

 

There is a rad-hard version of this part, ISL706, for systems with a 3.3v supply, but this 

won’t work with the 3.1v rail, as the “power-good” threshold can be as high as 3.15v.  

One option might be to use a comparator to assert POR_RESETb.  Or use another 

LT3083 to make the 3.0v supply for the LMX2531, then use the ISL706.  This might be 

the way to go if we want to use the watchdog timer. 

 

The Latchup Current Limiter 

As noted above, the LCL needs to be set to a level much higher than the operating current 

to permit the Zynq to start up.  Maybe this is OK: the Zynq will survive an SEE-induced 

latchup which draws >1.3A.  Or maybe we need to figure out how to set the LCL to a 

higher level during power-up and a lower one during operation. 

 


